第三回 若手による重力・宇宙論研究会 @ 京都大学

重力波観測の現状と 今後の展望

道村唯太 東京大学大学院理学系研究科物理学専攻

重力波物理学・天文学の幕開け

- これまでに連星ブラックホール10例、
 連星中性子星1例(ガンマ線バーストも)
- 合計質量20-80Msun程度の重たい恒星質量BH
- 一般相対性理論の検証
- 重力波の伝播速度
- ハッブル定数測定
- キロノヴァの観測

LIGO-Virgo Compact Binary Catalogue

https://catalog.cardiffgravity.org/ 2

今後も豊富なサイエンス

- 重たい恒星質量ブラックホールの起源
- 中間質量ブラックホールの存在
- ・ 超新星爆発、パルサー、中間質量比連星(IMRI)
- ハッブル定数の精密測定
- 初期宇宙からの背景重力波
- 一般相対性理論の検証 ブラックホールの準固有振動、メモリー効果、 重力波の偏極モード などなど……

→複数台での高角度分解能で高精度な観測や 多波長観測が重要

重力波観測のこれから

- 今ある地上重力波望遠鏡の高感度化(~2024年) Advanced LIGO, Advanced Virgo, KAGRA LVは2019年4月1日に観測再開、約1年(O3) KAGRAも2019年末にはO3に参加予定 それぞれにアップグレード計画 連星中性子星の観測可能距離で~300 Mpc
- 10 km級の地上重力波望遠鏡 (~2035年?)
 Einstein Telescope, Cosmic Explorer
 観測可能距離z=10に到達し、ほぼ全宇宙の
 コンパクト連星合体が見えるように
- 宇宙重力波望遠鏡
 LISAは2034年打ち上げ予定
 DECIGO, Taiji / TianQinも計画進行中

地上重力波観測ネットワーク

• 3-4 kmのレーザー干渉計型重力波望遠鏡

Advanced LIGO

Advanced Virgo

Advanced LIGO

KAGRA

https://git.ligo.org/publications/detectors/obs-scenarios-2018/blob/master/Figures/ObsScen_fig2_v12.pdf

Advanced LIGO

- 基線長4 km、40 kg石英鏡
- 現在はLivingstonが135 Mpc、Hanfordが90 Mpc
- 3月4日からHLVで試験運転(ER14)開始予定
- 4月1日からHLVで約1年のO3開始予定
- Open Public Alerts
 BNSは 2/year, upto 1/month, 12-21%が<20deg²以下 BBHが 1/month – 1/week

Advanced LIGO

Advanced Virgo

- 基線長3 km、42 kg石英鏡
- 現在は54 Mpc (O3では60 Mpcを目指す)
- 最近squeezingが導入され、高周波で感度向上
- aLIGOと同期してER14、O3開始予定
- O3後の2020年からアップグレード予定 Phase-1: upto 160 Mpc power increase, signal recycling, frequency dependent squeezing, Newtonian noise cencellation Phase-2: upto 300 Mpc Larger mirror, better coating

Advanced Virgo ・ アップグレード計画AdV+で300 Mpc

KAGRA

KAGRA

• O3へは8-25 Mpc程度で参加見込み

より長期的なアップグレード計画

A+やAdV+と同等の感度

次世代重力波望遠鏡計画

- 10-40 kmのレーザー干渉計型重力波望遠鏡
- ・場所と台数は未定

Cosmic Explorer

次世代重力波望遠鏡計画

• Einstein Telescope

10 km、200 kgシリコン鏡、地下 低温10 K低周波干渉計と常温高周波干渉計 2箇所に候補が絞られた(2022年に決定予定) イタリアSardinia島 ベルギー-ドイツ-オランダの国境 2023年に最終デザイン決定 2032年からインストール予定

Cosmic Explorer

40 km、320 kgシリコン鏡、120 K 4 km LIGO Voyagerを経る

・ 感度が1桁向上

観測可能距離 ・次世代重力波望遠鏡(~2035)で<mark>O(10⁵)イベント/年</mark>

宇宙重力波望遠鏡計画

- ・地上では地面振動のため数Hz以下に感度をもたせるのは困難
 →宇宙で低周波
- 宇宙では基線長も長くできる
 標準量子限界はLで決まる

$$h_{\rm SQL} = \sqrt{\frac{8\hbar}{m\omega^2 L^2}}$$

宇宙計画の現状

- LISA (ESA主導、NASAも、€1200M)
 2016年LISA Pathfinderでセンサーの実証完了
 2034年打ち上げ予定 (1980年代から計画されていた...)
 250万 km
- DECIGO (日本)
 Fabry-Perot共振器
 1000 km
 100 kmのB-DECIGO
- Taiji / TianQin (中国)
 LISAと同様の方式
 300万km / 15万 km

https://www.cosmos.esa.int/web/lisa-pathfinder/the-lisa-technology-package

まとめ

- 重力波観測はまだまだこれから
- 高感度化にはお金と時間がかかる
- 多イベント時代、複数台時代にはターゲットを絞った観測もあり? 狭帯域化?
- どの周波数帯でどのくらいの感度が必要か、
 がわかるとよい
- KAGRAのアップ
 グレード計画に
 対する意見募集中
- 必要最低限な宇宙 計画を募集中

宣伝

- レーザー干渉計による精密計測を利用すると いろいろな基礎物理実験ができる $\delta L = \delta c$
- Lorentz不変性の検証 光速の等方性の検証
 - Y. Michimura+, PRL 110, 200401 (2013)
 - Y. Michimura+, PRD 88, 111101(R) (2013)
- アクシオンの探査
 I. Obata+, <u>PRL 121, 161301 (2018)</u>
- • 巨視的量子力学の検証
 巨視的な鏡の位置の重ね合わせ
 N. Matsumoto+, <u>PRL 122, 071101 (2019)</u>

 $\delta \nu$

 \overline{I} =

巨視的量子力学の検証

• 巨視的な鏡でも位置の重ね合わせが観測できるか

Lorentz 不変性の 検証

 光速の等方性を検証することで光子のLorentz 不変性を検証

アクシオンの探査

 アクシオンとの相互作用により、2つの円偏光の <u>j速に走いこ</u> 1± $\frac{g_{a\gamma}a_0m_a}{k}\sin(m_at+\delta_{\tau})$ ¹⁰⁻¹² 光速に差が生じる

 $c_{\pm} =$

FIG. 2. The sensitivity curves for the axion-photon coupling constant $g_{a\gamma}$ with respect to the axion mass m. The solid blue (red) line shows the sensitivity of our experiment (L, F, P) = $(1(10) \text{ m}, 10^4(10^6), 10^2(10^2) \text{ W})$. The gray band represents the current limit from CAST [5]. The dashed black lines are the prospected limits of IAXO [6] and ALPS-II [7] missions. The dashed turquoise blue and purple lines show the proposed reaches of axion optical interferometer suggested in [10] and ABRA-CADABRA magnetometer [12]. The orange and pink bands denote the astrophysical constraints from the cosmic 29 observations of SN1987A [15] and radio galaxy M87 [17].

おしまい

2G/2G+ Parameter Comparison

	KAGRA	AdVirgo	aLIGO	A+	Voyager
Arm length [km]	3	3	4	4	4
Mirror mass [kg]	23	42	40	80	200
Mirror material	Sapphire	Silica	Silica	Silica	Silicon
Mirror temp [K]	22	295	295	295	123
Sus fiber	35cm Sap.	70cm SiO ₂	60cm SiO ₂	60cm SiO ₂	60cm Si
Fiber type	Fiber	Fiber	Fiber	Fiber	Ribbon
Input power [W]	67	125	125	125	140
Arm power [kW]	340	700	710	1150	3000
Wavelength [nm]	1064	1064	1064	1064	2000
Beam size [cm]	3.5 / 3.5	4.9 / 5.8	5.5 / 6.2	5.5 / 6.2	5.8 / 6.2
SQZ factor	0	0	0	6	8
F. C. length [m]	none	none	none	16	300

LIGO parameters from LIGO-T1600119, AdVirgo parameters from JPCS 610, 01201 (2015)

31

KAGRA Detailed Parameters

K. Komori *et al.*, <u>JGW-T1707038</u>

• Optical parameters

- Mirror transmission: 0.4 % for ITM, 10 % for PRM, 15.36 % for SRM
- Power at BS: 674 W
- Detune phase: 3.5 deg (DRSE case)
- Homodyne phase: 135.1 deg (DRSE case)

• Sapphire mirror parameters

- TM size: 220 mm dia., 150 mm thick
- TM mass: 22.8 kg
- TM temperature: 22 K
- Beam radius at ITM: 3.5 cm
- Beam radius at ETM: 3.5 cm
- Q of mirror substrate: 1e8
- Coating: tantala/silica
- Coating loss angle: 3e-4 for silica, 5e-4 for tantala
- Number of layers: 22 for ITM, 40 for ETM
- Coating absorption: 0.5 ppm
- Substrate absorption: 50 ppm/cm

• Suspension parameters

- TM-IM fiber: 35 cm long, 1.6 mm dia.
- IM temperature: 16 K
- Heat extraction: 5800 W/m/K at 20 K
- Loss angle: 5e-6/2e-7/7e-7 for CuBe fiber/sapphire fiber/sapphire blade

• Inspiral range calculation

- SNR=8, fmin=10 Hz, sky average constant 0.442478
- Seismic noise curve includes vertical coupling, vibration from 32 heatlinks and Newtonian noise from surface and bulk

KAGRA Cryopayload

Figure by T. Ushiba and A. Hagiwara

3 CuBe blade springs

(SUS, 65 kg)

Platform

Marionette (SUS, 22.5 kg)

Intermediate Mass (SUS, 20.1 kg, 16 K)

Test Mass (Sapphire, 23 kg, 22 K) MN suspended by 1 Maraging steel fiber (35 cm long, 2-7mm dia.) MRM suspended by 3 CuBe fibers

Heat link attached to MN

IM suspended by 4 CuBe fibers (24 cm long, 0.6 mm dia) IRM suspended by 4 CuBe fibers

4 sapphire blades

TM suspended by 4 sapphire fibers (35 cm long, 1.6 mm dia.) RM suspended by 4 CuBe fibers

KAGRA Cryostat Schematic

KAGRA Data Tree

Figure provided by N. Kanda 37

KAGRA Scientific Congress

Possible KAGRA Upgrade Plans

Possible KAGRA Upgrade Plans

Y. Michimura+, <u>PRD 97, 122003 (2018);</u> <u>JGW-T1809537</u>

		bKAGRA	\mathbf{LF}	HF	40kg	FDSQZ	Combined
detuning angle (deg)	$\phi_{ m det}$	3.5	28.5	0.1	3.5	0.2	0.3
homodyne angle (deg)	5	135.1	133.6	97.1	123.2	93.1	93.0
mirror temperature (K)	$T_{ m m}$	22	23.6	20.8	21.0	21.3	20.0
SRM reflectivity (%)	$R_{ m SRM}$	84.6	95.5	90.7	92.2	83.2	80.9
fiber length (cm)	$l_{\rm f}$	35.0	99.8	20.1	28.6	23.0	33.1
fiber diameter (mm)	d_{f}	1.6	0.45	2.5	2.2	1.9	3.6
mirror mass (kg)	m	22.8	22.8	22.8	40	22.8	100
input power at BS (W)	I_0	673	4.5	3440	1500	1500	3470
maximum detected squeez	ing (dB)	0	0	6.1	0	5.2 (FC)	5.1 (FC)
$100 M_{\odot}$ - $100 M_{\odot}$ inspiral rat	nge (Mpc)	353	2099	114	412	318	702
$30 M_{\odot}$ - $30 M_{\odot}$ inspiral range (Mpc)		1095	1094	271	1269	855	1762
$1.4M_{\odot}$ - $1.4M_{\odot}$ inspiral range (Mpc)		153	85	156	202	179	307
median sky localization error (deg^2)		0.183	0.507	0.105	0.156	0.119	0.099