Gravitational Wave Advanced Detector Workshop 2016 (Hotel Hermitage, La Biodola, Isola d'Elba, May 22-28, 2016)

Optical Levitation of a Mirror

Yuta Michimura¹, Yuya Kuwahara¹, Takafumi Ushiba¹, Nobuyuki Matsumoto² and Masaki Ando^{1,3}

¹Department of Physics, University of Tokyo ²Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Email: michimura@granite.phys.s.u-tokyo.ac.jp ³National Astronomical Observatory of Japan

Abstract:

An optomechanical device reaching the standard quantum limit (SQL) of a force measurement plays a prominent roll for studying quantum mechanics. To prepare such a device, a mechanical oscillator well isolated from the environment is essential for the reduction of thermal disturbances. Here we propose optical levitation of a mirror with two vertical Fabry-Perot cavities linearly aligned. We show the stability of the system with a mg-scale mirror, and demonstrate the feasibility of reaching the SQL with this system.

1. Motivation

3. Reaching the SQL

Test of quantum mechanics in macroscopic scale

- superposition not observed in macroscopic scale yet - possible solutions:
 - too much environmental disturbances?
 - nonlinear Schrödinger equation?
 - gravitational decoherence? etc.....
- need to test in wide mass scale
 - \rightarrow mg scale

Optical levitation instead of mechanical support

- no thermal noise from support

Parameter search

- intracavity power from mirror mass
- mirror diameter from coating thermal
- cavity length from beam size

~50 cm cavity length \rightarrow reach SQL at 60 kHz

2. Stability

-1 0 1

Sandwich configuration

- two cavities are enough to support a mirror tripod
- levitating mirror have to be convex

4. Issues to be solved

Technical issues

- production of thin & small curved mirror ϕ 4 mm, t 0.2 mm flat mirror is feasible [4] 6 out of 8 cracked for ϕ 3 mm, t 0.1 mm convex
- high SQL reaching frequency (10⁴ Hz) 10⁻²⁰ m/rtHz in displacement noise
- levitation procedure

Calculations needed

- initial alignment tolerance
- tolerance to external disturbances
- **Prototype test**
 - check stability and levitation procedure
- test using torsion balance underway

stable

SQL soon?

aLIGO [6]

References

[1] J. Chan+, Nature **478**, 89 (2011) [2] J. D. Taufel+, Nature **475**, 359 (2011) [3] R. W. Peterson+, Phys. Rev. Lett. **116**, 063601 (2016) [4] N. Matsumoto+, Phys. Rev. A 92, 033825 (2015) [5] A. R. Neben+, New J. of Phys. 14, 115008 (2012) [6] https://www.advancedligo.mit.edu/core.html [7] G. Guccione+, Phys. Rev. Lett 183001 (2013)

5. Conclusion

We have proposed the use of sandwich configuration to stably levitate a mg-scale mirror. Although the levitation itself is feasible for convex mirror, beating the SQL could be tough. Since we cannot choose the mirror mass and the intracavity power independently, frequency band of the sub-SQL window will be high (10⁴ Hz). Trial production of mg-scale convex mirrors and the prototype test using torsion balance is underway to check technical feasibility.