ABCD matrices for flipped mirror

Yuta Michimura
Department of Physics, University of Tokyo
March 12, 2013 *

Glossary

$$
\begin{array}{ll}
\theta & \text { angle of incidence on AR surface } \\
\phi & \text { angle of incidence on HR surface } \\
n & \text { mirror refractive index } \\
d & \text { mirror thickness }
\end{array}
$$

1 Introduction

ABDC martices for reflection from flipped mirror are shown.

2 Basic ABCD matrices

2.1 Free space

Refractive index n, length d.

$$
\left(\begin{array}{ll}
1 & \frac{d}{n} \tag{2.1}\\
0 & 1
\end{array}\right)
$$

2.2 Curved mirror

Radius of curvature R, angle of incidence ϕ.

2.2.1 Tangential plane

$$
\left(\begin{array}{cc}
1 & 0 \tag{2.2}\\
-\frac{2}{R \cos \phi} & 1
\end{array}\right)
$$

[^0]
2.2.2 Sagittal plane

$$
\left(\begin{array}{cc}
1 & 0 \tag{2.3}\\
-\frac{2 \cos \phi}{R} & 1
\end{array}\right)
$$

2.3 Interface

Initial refractive index n_{1}, final refractive index n_{2}, incident angle θ_{1}, refraction angle θ_{2}. From Snell's law, $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$. Note that Siegmann uses "reduced slopes". He says "this actual slope is multiplied by the local index of refraction at the ray position" in p.583.

2.3.1 Tangential plane

$$
\left(\begin{array}{cc}
\frac{\cos \theta_{2}}{\cos \theta_{1}} & 0 \tag{2.4}\\
0 & \frac{n_{1} \cos \theta_{1}}{n_{2} \cos \theta_{2}}
\end{array}\right)
$$

2.3.2 Sagittal plane

$$
\left(\begin{array}{cc}
1 & 0 \tag{2.5}\\
0 & \frac{n_{1}}{n_{2}}
\end{array}\right)
$$

3 ABCD matrices for a flipped mirror

3.1 Tangential plane

$$
\begin{align*}
M_{t} & =\left(\begin{array}{cc}
\frac{\cos \theta}{\cos \phi} & 0 \\
0 & \frac{n \cos \phi}{\cos \theta}
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{d}{n} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\frac{2}{R \cos \phi} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{d}{n} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{\cos \phi}{\cos \theta} & 0 \\
0 & \frac{\cos \theta(3.1}{n \cos \phi}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1-\frac{2 d}{n R \cos \phi} & -\frac{2 d \cos ^{2} \theta}{n^{2} \cos ^{2} \phi}\left(1-\frac{d}{n R \cos \phi}\right) \\
-\frac{2 n \cos \phi}{R \cos ^{2} \theta} & 1-\frac{2 d}{n R \cos \phi}
\end{array}\right) \tag{3.2}
\end{align*}
$$

When mirror thickness is small $d \rightarrow 0$,

$$
M_{t}=\left(\begin{array}{cc}
1 & 0 \tag{3.3}\\
-\frac{2 n \cos \phi}{R \cos ^{2} \theta} & 1
\end{array}\right)
$$

So, effective curvature is multiplied by $\frac{\cos ^{2} \theta}{n \cos ^{2} \phi}$ compared with un-flipped case. ABCD matrix for flipped and un-flipped are different by $-1 / n$ when incident angle is 0 .

3.2 Sagittal plane

$$
\begin{align*}
M_{s} & \left.=\left(\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{d}{n} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\frac{2 \cos \phi}{R} & 1
\end{array}\right)\left(\begin{array}{ll}
1 & \frac{d}{n} \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{n}
\end{array}\right) .4\right) \\
& =\left(\begin{array}{cc}
1-\frac{2 d \cos \phi}{n R} & \frac{2 d}{n^{2}}\left(1-\frac{d \cos \phi}{n R}\right. \\
-\frac{2 n \cos \phi}{R} & 1-\frac{2 d \cos \phi}{n R}
\end{array}\right) \tag{3.5}
\end{align*}
$$

When mirror thickness is small $d \rightarrow 0$,

$$
M_{s}=\left(\begin{array}{cc}
1 & 0 \tag{3.6}\\
-\frac{2 n \cos \phi}{R} & 1
\end{array}\right)
$$

So, effective curvature is multiplied by $-1 / n$ compared with un-flipped case.

[^0]: * July 10, 2015: Added some notes on refractive index.

