KAGRA and LIGO

Kentaro Komori

Ando Group Midterm Seminar 2024/4/24

Abstract

► Introduction and comparison of KAGRA and LIGO

➢Basics

➤Suspension

>Optics and interferometric parameters

≻LIGO Hanford

- One of two LIGO sites
- Located near the city of Richland, in south-eastern Washington St.
- On rocky Columbia Plateau
- Columbia River flowing nearby
- Hot and dry summer, cool and moist winter

➢Remarks

- Strong wind sometimes affect the operation
- So many rolling tumble weed
- Ravens had caused noises with pecking frost-covered pipes connected to a nitrogen cryopump

≻LIGO Livingston

- Located near the city of Baton Rouge in south-east Louisiana St.
- Various wetlands and swamps
- Mississippi River flowing nearby
- Hot and humid summer with thunderstorm and hurricane

➢Remarks

- Micro-seismic is often very high due to nearby sea
- Train noise via scattering of light at cryo-baffle in O3
- The antenna patter is very similar as LHO to achieve simultaneous observation

≻KAGRA

- KAmioka GRAvitational-wave observatory
- Inside Mt. Ikeno-yama at Kamioka-cho, Hida city, Gifu pref.
- Ikeno-yama Mt. contains also Kamiokande
- Relatively stable temperature and humidity

➢Remarks

- Cryogenic operation
- Low seismic noise
- Demonstration toward next-generation observatory
- Micro-seismic from Japan Sea, earthquakes

≻Type-A

Multiple pendula ✓ Hor: 9 stages ✓ Ver: 5 stages

Type-A: Inverted pendulum (IP) and Geometric Anti-Spring (GAS) filter

Top

Filter

- ≻LIGO overview
- ✓ Vacuum chamber: BSC and HAM
- ✓ Suspension:
 - HEPI + ISI for the base
 - Quad for TMs
 - Triple for BS, PRs, SRs, MCs
 - Double or single for others

➢HEPI (hydraulic external pre-isolator) and ISI (in-vacuum seismic isolator)
✓ Active isolation

BSC HEPI (1 stage) and ISI (2 stages)

Triple (HAM Large Triple Suspension: HLTS)

\checkmark No reaction chain

Optics

≻Test mass

			LIGO	KAGRA		
	ITMX: Input Test Mass, X arm	Substrate	Silica	Sapphire	ETMX: End Test Mass, X arm (x,y,z)=(3999498.0, -200.0, -80.0) mm	ERMX: End Reaction Mass, X arm ROC = pl/pl
82.9) mm	(x,y,z)=(5013.0, -200.0, -80.0) mm ROC = 1934 m, ω = 53 mm Ver. wedge = 0.08 deg. thick down	Mass		23 kg	ROC = 2245 m, ω = 62 mm Ver. wedge = 0.08 deg, thick down	Both sides AR D = 340 mm, t = 130 mm; 26 kg
+X +Y	S1: T = 1.4%; S2: AR D = 340 mm, t = 200 mm; 40 kg	Diamatan		23 Kg	D = 340 mm, t = 200 mm; 40 kg Suspension: Quad	Suspension: Quad
	Suspension: Quad	Diameter				
		Beam diameter	10.6 / 12.4 cm	7.0 cm		ERMX
c	BSC3	LC	Beam waist: ω ₀ = 12.0 mm ocation: 163 m towards ITM from mid-po	int	ETMX BSC9	TMX
CPX: Co (x,y,z)=(ROC = p	ompensation Plate, X arm (4793.0, -200.0, -80.0) mm pl/pl, ω = 53 mm		LIGO	KAGRA		TMX: Transmission Monitor, X arm Suspension: Double
Hor. wee S1 & S2	dge = 0.07 deg, thick -Y 2: AR	Transmissivity	1.4%	0.4%		
D = 340 Suspens	0 mm, t = 100 mm; 20 kg sion: Quad	Finesse	450	1550	-	
		Arm gain	290	1000		17/22

Optics

► PRG and power

	LIGO	KAGRA
PRM trans.	3.0%	10%
PRG	45	10
Arm loss (design)	n loss (design) 100 j	
Arm loss (design)	80 ppm	

	LIGO	KAGRA
Input power	60 W / 125 W	1.3 W / 68 W
Arm power	300 kW / 750 kW	10 kW / 340 kW

IM2 : ROC = 12.8 m, ω = 2.2 mm	PR3:
IM3 : ROC = -6.24 m, ω = 1.8 mm	(x,y,z
IM1, IM4: Steering Mirrors	ROC
Suspension: Single (HAM-AUX)	Ver. v
	S1: H
IFI: Input Faraday Isolator	D = 2

P: Periscope

(x,y,z) = (-19740.5, -174.0, -94.8) mm
BOC = 36.0 m w = 54 mm
$HOC = 30.0 \text{ m}, \omega = 34 \text{ mm}$
Ver. wedge = 0.1 deg, thick down
S1: HR; S2: AR; AOI = 0.608°
D = 265 mm, t = 101.4 mm; 12 kg
Suspension: Triple (HLTS)

	PRM: Power Recycling Mirror		
	(x,y,z) = (-20194.3, -628.0, -95.8) mm		
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		
D = 150 mm, t = 75 mm; 2.9 kg			
	Suspension: Triple (HSTS)		

8/22

Noise

> Thermal noise comparison in displacement $[m/\sqrt{Hz}]$

 \checkmark Suspension thermal noise

$$x_{susp} \propto \sqrt{\frac{T}{mQ_{susp}}}$$

	LIGO	KAGRA
Temperature	300 K	20 K
Mass	40 kg	23 kg
Beam diameter	10.6 / 12.4 cm	7.0 cm
Q _{susp}	109	107
Q _{coa}	104	104

✓ Coating thermal noise

$$x_{coa} \propto \sqrt{\frac{T}{w^2 Q_{coa}}}$$

✓ Temperature: KAGRA's adv.
 ✓ Q_{susp}: LIGO's adv. (Thin wire)

Noise

✓ Livingston noise budget

 Surprising remarks:

 The shot noise ~ half of the coating thermal noise at 40 Hz
 Fundamental noises ~
 To times larger than technical noises at 100 Hz

✓ Coating thermal noise is larger than expected
 G2400537

Noise

- ✓ KAGRA noise budget
- ✓ Dominant noise sources:
 - 1. Suspension control noises
 - 2. Acoustic noise
 - 3. Shot noise
 - 4. Frequency noise

Summary

≻Comparison of KAGRA and LIGO

- Basics
- Suspension
- Optics and interferometric parameters
- Noise

➤GW detectors are interesting! Please get familiar with detectors and chat with me!