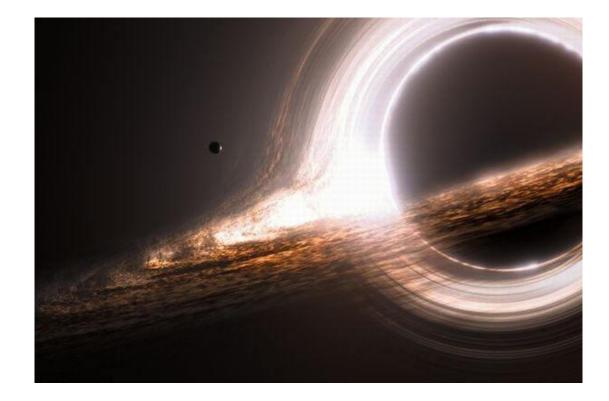
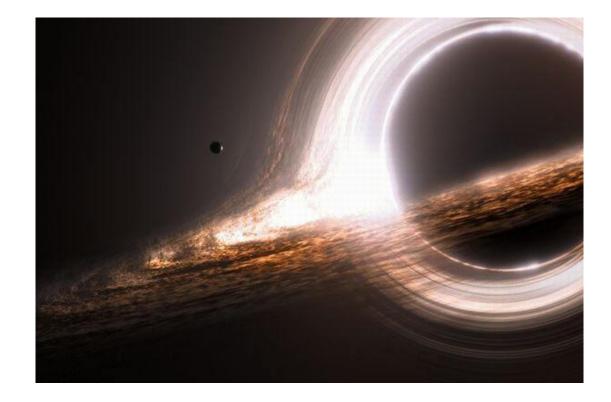
The Evaluation of the relation between Quasi-Periodic Oscillation and mass of the black hole candidates (ブラックホール候補天体における 準周期的振動-質量の関係性の評価)

Naoki Kita


May 9, 2018 @Ando Lab

About this talk

- I talk about my graduation thesis in Tokyo University of Science.
- I explain the overall view of my theme and don't mention everything.
- The theme is "QPO (Quasi-Periodic Oscillation)", which is seen in compact objects.


Contents

- 1. Introduction
 - Matsushita Lab
- 2. Principles
 - QPO(Quasi-Periodic Oscillation)
- 3. Analysis
 - Power Spectrum
- 4. Conclusion

Contents

- 1. Introduction
 - Matsushita Lab
- 2. Principles
 - QPO(Quasi-Periodic Oscillation)
- 3. Analysis
 - Power Spectrum
- 4. Conclusion

Introduction

Skip!

~My life~ I was born

18 years old

5 years old

22 years old

2014 Enroll in the Tokyo University of Science 2018 Graduate from the Tokyo University of Science Enrole in the University of Tokyo

Matsushita Lab

• X-ray Astronomy Lab

Why X-ray?

⇒There are many kinds of electromagnetic waves.

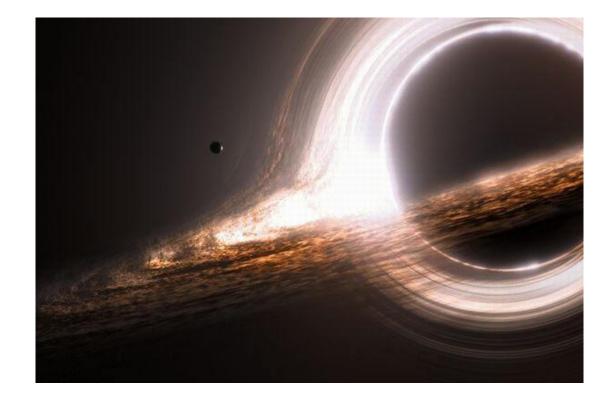
Especially X-ray and γ -ray are suitable for high-energy objects. How to research?

 \Rightarrow Analysis the data from the X-ray observatories.

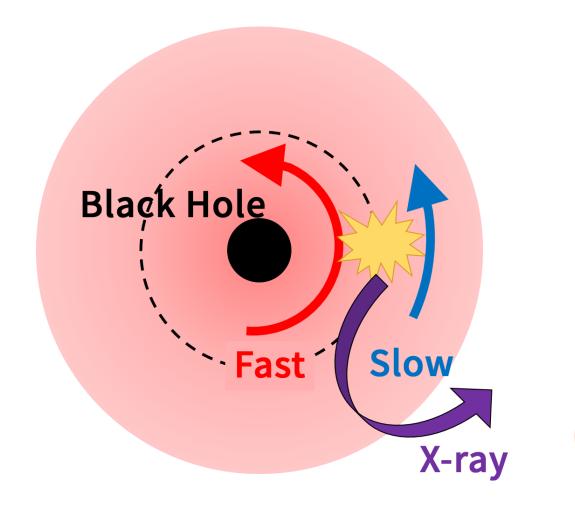
What main target?

⇒Galaxy, Cluster of Garaxies, Black Hole, AGN, NS and so on...

How to get data


1. Retreival object name

2. Choose observatory


3. Choose date

Contents

- 1. Introduction
 - Matsushita Lab
- 2. Principles
 - QPO(Quasi-Periodic Oscillation)
- 3. Analysis
 - Power Spectrum
- 4. Conclusion

Accretion Disk

【Angular velocity】 As go inside : Fast As go outside : Slow

Thermal

energy

Causing friction at boundaries between "Fast region" and "Slow region"

Light

energy

Fig1. X-ray emission mechanism of black hole

Types of black hole

Stellar-mass BH	Intermediate-mass BH	Massive BH
mass: 5 – 15 M_{\odot}	mass: $10^2 M_{\odot} \sim$	mass: $10^{6} - 10^{9} M_{\odot}$
This type is generated from supernova of fixed stars.	This type is generated from the union of two Stellar-mass BHs. The candidates is called "ULX", Ultra-Luminous X-ray source.	This type is generated from mass accretion around intermediate- mass BHs. But this is one of hypotheses and the existence is almost unknown.

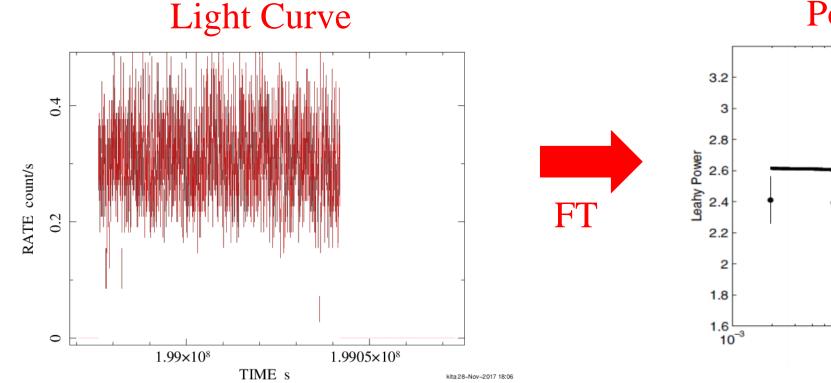
States of stellar-mass black hole

state	features
very high state	Very bright and high energy by Inverse Compton sacattering
high/soft state	Rate of accretion and radiation efficiency is high
intermediate state	The state in transition between high and low states
low/hard state	Rate of accretion and radiation efficiency is low
quiescent state	Low state features + lower luminosity

Light Curve

Plot of file pn_cor_lc0_100.fits 0.6 RATE count/s 0.4 0.2 0 1.9706×108 1.9708×108 1.971×108 1.9712×108 1.9714×108 1.9716×108 1.9718×108 TIME s

Light Curve is...


the plot which shows the relation between Time[s] and Count Rate[count/s]

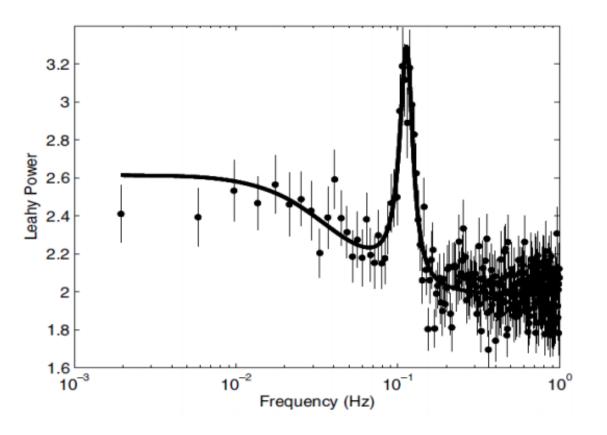
Count Rate shows the number of incident photons per second

kita 24-Feb-2018 18:53

Timing Analysis

We apply Fourier Transform to Light Curve and get Power Spectrum.

Power Spectrum


Frequency (Hz)

10⁻¹

10⁰

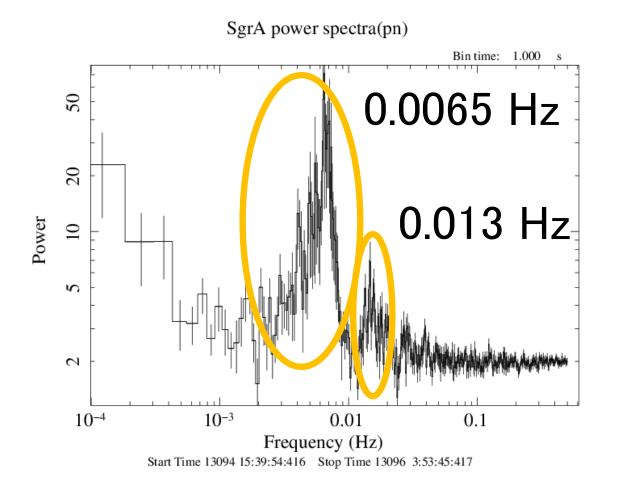
 10^{-2}

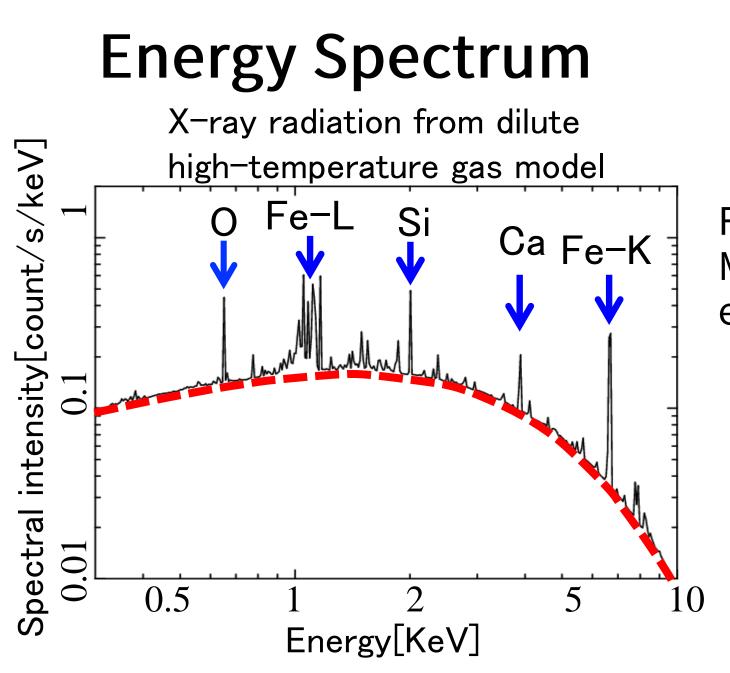
QPO(Quasi-Periodic Oscillation)

QPO is a phenomenon which have one or some peak(s) with width in power spectrum.

In respect to stellar-mass BH, it is considered that 1.Variability of accretion disk itself 2.Instabilty of gas in the disk cause QPO.

Twin-peak QPO

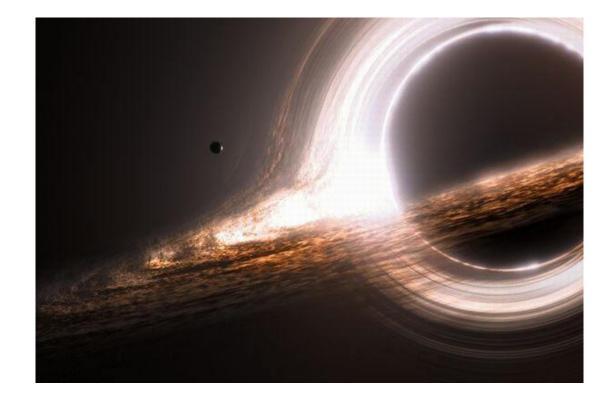

It is considered that Twin-peak QPO is strongly related to mass of objects.


Vibration period of blightness

Size of radiation area

Schwarzschild radius

Mass of BH



Fitting energy spectrum needs Many models. e.g)thermal bremsstrahlung, synchrotron radiation, black body radiation, each blight line spectrum

• • •

Contents

- 1. Introduction
 - Matsushita Lab
- 2. Principles
 - QPO(Quasi-Periodic Oscillation)
- 3. Analysis
 - Power Spectrum
- 4. Conclusion

X-ray observatory part1

XMM-Newton

Chandra

Suzaku

X-ray observatory part2

RXTE

ASTRO-H ひとみ

X-ray observatory part2

RXTE

ASTRO-H ひとみ

XMM-Newton

XMM-Newton was launched by ESA on December 10th 1999.

Time resolution: 12 arcseconda Effective area: 3000cm² to 6keV Grating: reflective Hight of perigee: 7000km Orbital period: 47.8h

Detectors of XMM-Newton

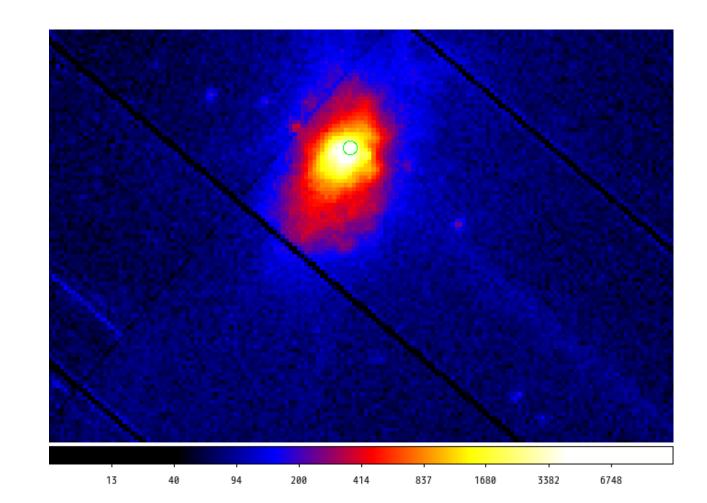
MOS[1 pixel = 1.1"]	Time Resolution [s]	Live Time[%]	Max count rate difuse(total) [s ⁻¹]	Max count rate (flux) point source [mCrab ⁴ s ⁻¹]
Full frame(600×600)	2.6	100.0	150	0.50(0.17)
Large window(300×300)	0.9	99.5	110	1.5(0.49)
Small window(100×100)	0.3	97.5	37	4.5(1.53)
Timing uncompressd (100 × 600)	0.00175	100.0	N/A	100(35)

XMM-Newton has 3 detectors, MOS1 • MOS2 and PN. Time resolution of PN is very high. So I adopt 1. MOS1+MOS2 2. PN only

as data set.

PN [1 pixel = 4.1"]	Time Resolution [s]	Live Time[%]	Max count rate difuse(total) [s ⁻¹]	Max count rate (flux) point source [mCrab ⁴ s ⁻¹]
Full frame(376×384)	73.4	99.9	1000	2(0.23)
Extended	199.1	100.0	370	0.3(0.04)
Full frame(376×384)				
Large window(198×384)	47.7	94.9	1500	3(0.35)
Small window(63×64)	5.7	71.0	12000	25(3.25)
Timing(64×200)	0.03	99.5	N/A	800(85)
$Burst(64 \times 180)$	0.007	3.0	N/A	60000(6300)

Objects

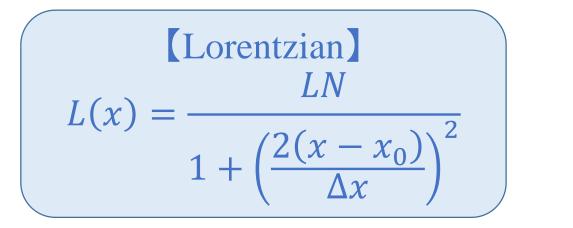

object	obs ID	time
	0112460201	2001-08-30 02:37:53
GROJ1655-40	0112921301	2005-02-27 07:46:53
	0400890201	2007-03-26 15:18:27
XTEJ1550-564	0204270101	2004-08-11 06:24:43
	0400890101	2007-02-25 10:03:06
	0112990501	2003-10-17 00:10:08
GRS1915+105	0144090101	2004-04-17 14:18:56
	0506161201	2007-09-29 23:55:48
H1743-322	0724401901	2014-09-23 19:15:51
	0783540201	2016-03-13 03:25:57
M82 X-1	0206080101	2004-04-21 21:36:32

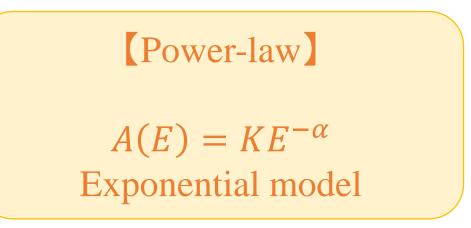
NGC5408 X-1	0302900101	2006-01-13 18:41:00
	0500750101	2009-01-13 19:05:27
	0723130401	2014-02-13 00:23:35
NGC6946 X-1	0200670401	2006-06-25 16:28:06
	0500730201	2007-11-02 21:53:24
	0691570101	2012-10-21 17:50:58
Swift J1644+57	0678380201	2011-04-30 07:31:07
	0700381601	2012-10-05 19:06:15
	0784790101	2016-10-18 14:20:23
	0202670601	2004-03-30 14:46:36
Sgr A*	0202670701	2004-08-31 03:12:01
	0762250301	2015-09-27 15:48:39
REJ1034+396	0506440101	2007-05-31 19:47:14
	0561580201	2009-05-31 01:44:37
	0655310201	2010-05-11 05:32:56

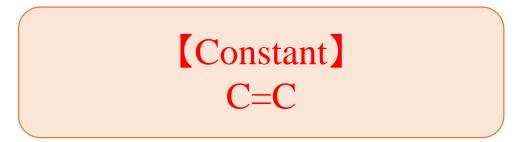
Region File

Make region files for each objects.

e.g.)M82 X-1

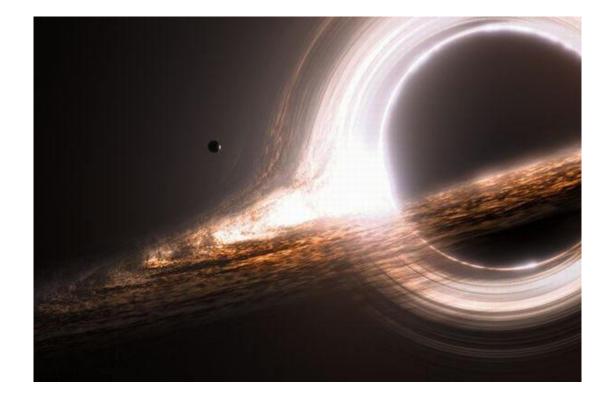


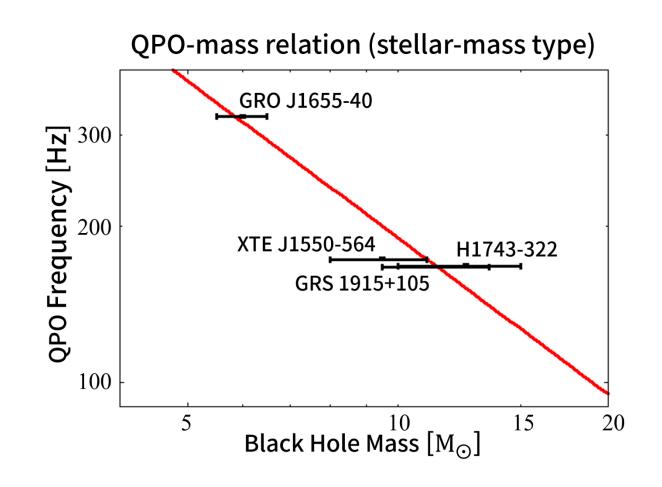

Software


- Ciao command
- ⇒program for analysis of CHANDRA e.g.)deflare
 - Sas command
- ⇒program for analysis of XMM-Newton e.g.)evselect
 - ds9
- ⇒make region files
- XRONOS(ver 5.22)
- ⇒TF program for Timing Analysis

Fitting model

Different from energy fitting, we mainly use 3 models for Timing Analysis.

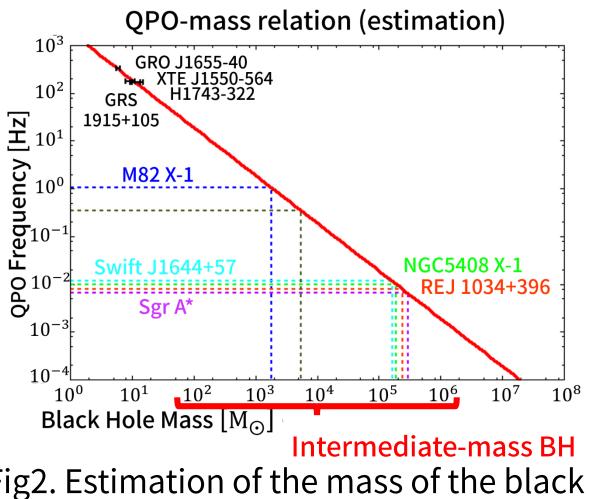




Contents

- 1. Introduction
 - Matsushita Lab
- 2. Principles
 - QPO(Quasi-Periodic Oscillation)
- 3. Analysis
 - Power Spectrum
- 4. Conclusion

Conclusion


$$f [Hz] = 1903.28 \left(\frac{M}{M_{\odot}}\right)^{-1}$$

inverse proportionality

If we can adopt the relation to other type BH candidates, Their QPO frequency should be much smaller...?

Fig1. The relation between QPO-mass of the stellar-mass black holes

Conclusion

Analysis QPO of 6 candidates and Adopt the relation

$$f [Hz] = 1903.28 \left(\frac{M}{M_{\odot}}\right)^{-1}$$

Then...

The mass of all objects are included in Intermediate-mass BH region!!

Fig2. Estimation of the mass of the black hole candisates from QPO-mass of the stellar-mass black holes

Summary

- I applied the relation between QPO and mass of the stellar-mass black holes to intermediate-mass or massive black hole candidates.
- As a result, it is suggested that the candidates M82 X-1, Swift J1644+57, NGC5408 X-1 NGC6946, REJ1034+396, Sgr A*

are intermediate-mass black holes with respect to QPO.

Thank you for listening !