連続波探索

Yousuke ITOH RESCEU, Univ. Tokyo

Target

連続重力波を出す天体とはどんなものか(物理)

連続重力波を出す天体とはどんなものか(物理)

- 軸対称定常な系からは重力波でない。
- 高速自転する、表面がでこぼこしたコンパクト 星(パルサー、高速自転するクオーク星 etc.)

- でこぼこの程度を表すパラメータ

$$\epsilon = \frac{I_{xx} - I_{yy}}{I_{zz}}$$
 山の高さ~1mm $\left(\frac{\epsilon}{10^{-7}}\right) \left(\frac{\text{中性子星の半径}}{10km}\right)$

- 重力波パルサーが放射する重力波の振幅 $h_0 = \frac{16\pi^2 G}{c^4} \frac{\epsilon I_{zz} f^2}{r}$ $= 4.2 \times 10^{-27} \frac{\epsilon}{10^{-7}} \frac{I_{zz}}{10^{45} \text{g/cm}^2} \left(\frac{f_0}{100 \text{Hz}}\right)^2 \left(\frac{r}{1 \text{kpc}}\right)^{-1}$

- Neustron star with large toroidal magnetic field (Cutler 2002)

 $\epsilon_{B} = \begin{cases} -1.6 \times 10^{-6} (\langle B_{t} \rangle / 10^{15} \text{ G}), & B_{t} < B_{c1}, \\ -1.6 \times 10^{-6} (\langle B_{t}^{2} \rangle / 10^{30} \text{ G}), & B_{t} > B_{c1}, \end{cases}$

Maximum ellipticity (Owen 2005)

(1) Normal conventional neutron star.

$$\epsilon_{\max} = 3.4 \times 10^{-7} \left(\frac{\sigma_{\max}}{10^{-2}}\right) \left(\frac{1.4 \ M_{\odot}}{M}\right)^{2.2} \left(\frac{R}{10 \ \text{km}}\right)^{4.26} \\ \times \left[1 + 0.7 \left(\frac{M}{1.4 \ M_{\odot}}\right) \left(\frac{10 \ \text{km}}{R}\right)\right]^{-1}.$$
(4)

(2) Solid strange star

$$\epsilon_{\max} = 2 \times 10^{-4} \left(\frac{\sigma_{\max}}{10^{-2}}\right) \left(\frac{1.4 \ M_{\odot}}{M}\right)^3 \left(\frac{R}{10 \ \text{km}}\right)^3 \times \left[1 + 0.14 \left(\frac{M}{1.4 \ M_{\odot}}\right) \left(\frac{10 \ \text{km}}{R}\right)\right]^{-1}$$
(9)

(3) Hybrid star

$$\frac{\epsilon_{\max}}{5 \times 10^{-6}} = \left(\frac{\sigma_{\max}}{10^{-2}}\right) \left(\frac{1.4 \ M_{\odot}}{M}\right)^2 \left(\frac{R_c}{8 \ \mathrm{km}}\right)^6 \left(\frac{10 \ \mathrm{km}}{R}\right)^2 \\ / \left[1 + 0.7 \left(\frac{M}{1.4 \ M_{\odot}}\right) \left(\frac{R}{10 \ \mathrm{km}}\right)\right], \quad (15)$$

GW Pulsars

- Persistent source
 - Verifiable source
 - Signal to noise ratio increases as Sqrt(Tobs).
 - We can detect it with one detector
 - Longer & stable observation eventually make it
- Known to exist there !
 - ATNF pulsar catalogue contains 1890 pulsars with frequencies, frequency derivatives and distances known.
 - Among 1890, 140 are in binaries.

Reward from GW pulsars search

- Crust breaking strain if distance is known.
 Quark star, hybrid star, large toroidal B-field
- Possible wobbling (rotation stability)
- Internal viscosity if r-mode GW is detected from a binary pulsar (LMXB)
- Spin-axis precession in a binary pulsar system.

To be fair: PSR: Min of SpD-UL and $\varepsilon = 10^{-7}$

We have a hope because there may be...

- 1. Binaries that may emit large amplitude GWs.
- 2. EM quiet pulsars just nearyby
 - Blind Search
- 3. Hybrid stars, large internal magnetic field, Quark stars,
- 4. uncertainties in PSR radii and distances.

Known accreting pulsar search: best case scenario

Watt et al. (2008)

$$h_0 = 3 \times 10^{-27} F_{-8}^{1/2} \left(\frac{R}{10 \text{km}}\right)^{3/4} \left(\frac{1.4 \text{ M}_{\odot}}{M}\right)^{1/4} \left(\frac{1 \text{ kHz}}{\nu_{\text{s}}}\right)^{1/2}$$

- Single template search
- 2 years integration
- quadrupole mode
- long-term average flux
- Perfect balance
- Open: frequency not known for sure.
- No limitation on computing power
- kHz QPOs are marginally detectable.

Known accreting pulsar search: better case scenario

- Multi templates search only "look-elsewhere" effect is taken into account.
- 2 years integration
- quadrupole mode
- long-term average flux
- Perfect balance
- Open: frequency not known for sure.
- No limitation on computing power
- SCO-X1 is marginally detectable.

Watt et al. (2008)

Known accreting pulsar search: realistic scenario

Watt et al. (2008)

- Multi templates search: "look-elsewhere" effect and computational limitation are taken into account.
- 2 years integration
- quadrupole mode
- long-term average flux
- Perfect balance
- Open: frequency not known for sure.
- 50 times faster computers for AdLIGO, 100 times faster for ET.
- SCO-X1 is marginally detectable.

Known accreting pulsar search: Number of templates

 Detectable if long-term average flux is larger than 1e-8.

1e15 templates data can be analyzed by LIGO today.

Watt and Krishnan (2009)

SCO-X1

- kHz QPO source: 272 +- 40.
- Distance known by parallax: 2.8+-0.3 kpc
- Proper motion detected.
- No pulsations found (= no spin frequency measurement).
- No spin down measurement.
- Orbital motion moderately well determined.

Can we infer spin frequency from kHz QPO?

Summary

- Pulsars are there.
- kHz QPOs would be marginally detectable by KLV if we have 50 x (current LSC computing power). Sco-X1 is most promising.
- Obstacles against possible detection are:
 - Computing power
 - Poor knowledge on the pulsar properties, especially spin frequency (and binary motion information).
 - Need to find a relationship between kHz QPO freq. and spin freq.
 - Need to have more precise and accurate measurements of pulsar and binary properties.

解析手法

解析手法 (LIGO)

- Single detector
 - Coherent
 - Bayesian Time domain
 - Frequentist Frequency domain (F-statistic)
 - Bayesian Frequency domain
 - Incoherent
 - Stack-slide
 - Powerflux
 - Hough
 - Sideband (?) for a pulsar in a binary: used in radio pulsar search in radio astronomy.
- Multi-detector
 - Coherent (Same as above)
 - Incoherent (Same as above)

日本で連続波探索をやっている人

- 0. 平川研究室(論文読んだことないので触れません。)
- K. Soida et. al, "Search for continuous gravitational waves from the SN1987A remnant using TAMA300 data", Class. Quantum Grav. 20 (2003) S645–S654
- T. Aktsu et. al., "Search for continuous gravitational waves from PSR J0835-4510 using CLIO data", Class. Quantum Grav. 25 (2008) 184013
- Koji Ishidoshiro, "Search for low-frequency gravitational waves using superconducting magnetically-levitated torsion antenna", PhD thesis (2010)
- 4. 伊藤(LSC, 2002-2005)

K. Soida et. al, TAMA SN1987A, CQG2003

- LIGO-GEO S1 paper (2004)より早い結果。
- 5.2節で指摘しているように、Barycentric resamplingをしていないため、FFTはある周波数でのみ正しい結果を与える(たぶんFFTをやる意味が無い)。
- Complex heterodyning
- JKS98の結果を使ってパラメータを減らしていない。
- ノイズは Stationary Gaussian を仮定。

T. Aktsu et. al., Vera CLIO, CQG2008

- Earth EphemerisはTEMPOとHORAIZONによって 取得。
- Shapiro time delay (msec) を無視 = 22Hzで0.1
 radiansの位相ミスマッチ = 1% SNR損。
- Soida et al. (2003)の方法 = FFTのうまみが無い。
- Complex heterodyning
- ・ JKS98は使っていない。
- ノイズは Gaussian stationary を仮定。

解析手法 (一般論)

重力波パルサーの探索方法(算数の準備, Jarawnoski, Krolak & Schutz 1998) **1.** 検出器の出力 = $J - \vec{x} + \vec{z}$ 力波信号 x(t) = n(t) + h(t). $h(t) = F_{+}(t)h_{+}(t) + F_{\times}(t)h_{\times}(t)$ 2. 重力波信号 = +x偏極の和 3.+x偏極の和の係数: 波源方向への検出器の感度を表す関数 F+,Fx 検出器の2本腕の向きと重力波の進行 $F_{+}(t) = \sin \zeta \left[a(t) \cos 2\psi + b(t) \sin 2\psi \right]$ 方向(波源の方向 (α, δ))、重力波の偏 極角 (polarization angle ψ)の関係に依 $F_{\times}(t) = \sin \zeta [b(t) \cos 2\psi - a(t) \sin 2\psi]$ 存。地球の自転・公転によって時間変化。 $a(t) = \frac{1}{16} \sin 2\gamma (3 - \cos 2\lambda) (3 - \cos 2\delta) \cos[2(\alpha - \phi_r - \Omega_r t)] - \frac{1}{4} \cos 2\gamma \sin \lambda (3 - \cos 2\delta) \sin[2(\alpha - \phi_r - \Omega_r t)]$ $+\frac{1}{4}\sin 2\gamma \sin 2\lambda \sin 2\delta \cos[\alpha - \phi_r - \Omega_r t] - \frac{1}{2}\cos 2\gamma \cos \lambda \sin 2\delta \sin[\alpha - \phi_r - \Omega_r t] + \frac{3}{4}\sin 2\gamma \cos^2\lambda \cos^2\delta,$ $b(t) = \cos 2\gamma \sin \lambda \sin \delta \cos[2(\alpha - \phi_r - \Omega_r t)] + \frac{1}{4} \sin 2\gamma (3 - \cos 2\lambda) \sin \delta \sin[2(\alpha - \phi_r - \Omega_r t)]$ $+\cos 2\gamma \cos \lambda \cos \delta \cos[\alpha - \phi_r - \Omega_r t] + \frac{1}{2}\sin 2\gamma \sin 2\lambda \cos \delta \sin[\alpha - \phi_r - \Omega_r t].$ 28

- λ:検出器の緯度
- L: 検出器の経度(西向きに正)
- ζ: 検出器の2本腕の間の角
- γ:検出器の2本腕の2等分線の方向(東から 計って正)

Detector	λ (degrees)	L (degrees)	γ (degrees)	ζ (degrees)
GEO600	52.25	-9.81	68.775	94.33
LIGO Hanford	46.45	119.41	171.8	90
LIGO Livingston	30.56	90.77	243.0	90
VIRGO	43.63	-10.5	116.5	90
TAMA300	35.68	-139.54	225.0	90

 $h(t) = h_1(t) + h_2(t)$, 検出したい重力波モデル: h1(t) はwobble, h2(t)は非軸対称性.

$$h_1(t) = F_+(t)h_{1+}(t) + F_{\times}(t)h_{1\times}(t),$$

$$h_2(t) = F_+(t)h_{2+}(t) + F_{\times}(t)h_{2\times}(t),$$

$$h_{1+}(t) = \frac{1}{8} h_0 \sin 2\theta \, \sin 2\iota \, \cos \, \Psi(t),$$

$$h_{2+}(t) = \frac{1}{2} h_0 \sin^2 \theta (1 + \cos^2 \iota) \cos 2\Psi(t),$$

$$h_{1\times}(t) = \frac{1}{4} h_0 \sin 2\theta \, \sin \, \iota \, \sin \Psi(t), \leqslant$$

$$h_{2\times}(t) = h_0 \sin^2 \theta \cos \iota \sin 2\Psi(t)$$
.

<u>重力波パルサーのパラメータ</u> (グリッチ無し, wobble & triaxial)

- Θ:星の対称軸と回転軸の間の角度
- ι:星の回転軸と視線方向の角度
- f₀^(k): 周波数時間変化のk-回時間 微分@t=0.
- r_d(t): 太陽系重心からの検出器の位置ベクトル
- n₀:太陽系重心から見たパルサー
 の方向ベクトル

 $\Psi(t) = \Phi_0 + 2\pi \sum_{k=0}^{s} \frac{f_0^{(k)}}{f_0} \frac{t^{k+1}}{(k+1)!} + \frac{2\pi}{c} \mathbf{n}_0 \cdot \mathbf{r}_d(t) \sum_{k=0}^{s} \frac{f_0^{(k)}}{f_0} \frac{t^k}{k!}$ グリッチ有りのときは f_0^{(k)}をアップデート。

Likelihood function (尤度関数) A

$$\Lambda \propto e^{-\frac{(n|n)}{2}} = e^{-\frac{(x-h|x-h)}{2}}$$
 x[検出器出力] = n[ガウスノイズ] + h[信号]

内積

$$(x|y) := 4 \operatorname{Re} \int_{0}^{\infty} \frac{\widetilde{x}(f)\widetilde{y}^{*}(f)}{S_{h}(f)} df$$
 検出器のノイズパワースペクトルS_h(f)

検出器出力x(t)に対して、パラメータpに依存する適当な重力波モ デルh(t;p)を仮定して、尤度関数が最大になるようなパラメータpを 探す。"Maximum likelihood method"

JKS98の発見:

対数尤度(log A)は以下の4つの波源パラメータについては解析的に最大化できる。

- h₀ sin Θ: 振幅
- ι :自転軸と視線方向のなす角度
- ψ :重力波偏角
- φ :初期重力波位相

F-Statistic (JKS98)

 $F = \max_{h_0,\iota,\psi,\Phi_0} Log\Lambda$ 具体的には、 $\mathcal{F} = \frac{T_0}{S_h(nf_0)} \frac{B|F_a|^2 + A|F_b|^2 - 2C\mathcal{R}(F_aF_b^*)}{AB - C^2}$

ただし(wobble n=1, r-mode 4/3, triaxial n=2 etc.)、

$$F_{a} = \frac{2}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} dt x(t) a(t) \exp[-in\Phi_{s}(t)] \exp[-i2\pi n f_{0}\{t + \Phi_{m}(t)\}]$$

$$F_{a} = \frac{2}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} dt x(t) h(t) \exp[-in\Phi_{s}(t)] \exp[-i2\pi n f_{0}\{t + \Phi_{m}(t)\}]$$

 $F_b = \frac{2}{T_0} \int_{-T_0/2} dt x(t) b(t) \exp[-in\Phi_s(t)] \exp[-i2\pi n f_0 \{t + \Phi_m(t)\}]$

ここで、重力波の位相を以下のように書いている。

$$\Phi(t) = 2\pi f_0[t + \Phi_m(t;\alpha,\delta)] + \Phi_s(t;f_0,\alpha,\delta)$$

A,B,Cは A=(a||a), B=(b||b), C=(a||b) で内積は

$$(x||y) \coloneqq \frac{2}{T_0} \int_{-T_0/2}^{T_0/2} x(t)y(t)dt$$

Detection statisticとしてのF-statistic

- 重力波信号のphase parameter (f₀^(k), α, δ)が(近似的に)分かっていて、ノイ ズがガウス分布にしたがうとする。
- 重力波信号が存在しないときには(あるnについて,たとえばtri-axial pulsar n=2 について)、2Fは自由度4のχ²分布にしたがう。

 $\chi_4^2(\mathcal{F})d\mathcal{F} = \mathcal{F}\mathrm{e}^{\mathcal{F}}d\mathcal{F}$

 重力波信号が存在するときには(あるnについて)、2Fは自由度4、非中心パ ラメータd²の非中心χ²分布にしたがう。

 $NC\chi_4^2(\mathcal{F}, d^2)d\mathcal{F} = \left(\frac{2\mathcal{F}}{d^2}\right)^{1/2} e^{-(\mathcal{F} + \frac{d^2}{2})} I_1(\sqrt{2\mathcal{F}}d)d\mathcal{F}$

ただしd²は、optimal signal to noise ratio

$$d^2 = (h|h) \simeq \frac{2}{S_h(nf_0)} \int_{-T_0/2}^{T_0/2} [h_n(t)]^2 dt \propto \frac{T_0 h_0^2}{S_h}$$

χ²分布と非中心χ²分布の性質

- 自由度nの χ^2 分布: 平均 $< 2\mathcal{F} >= n$,分散 $< (2\mathcal{F} < 2F >)^2 >= n$
- ・ 自由度n、非中心パラメータd²の非中心 χ^2 分布: 平均 $< 2\mathcal{F} >= n + d^2$,分散 $< (2\mathcal{F} - < 2F >)^2 >= 2n + 4d^2$

F-statisticの統計的性質がわかっていると何が嬉しいのか?: 候補イベントがどれぐらい重力波っぽいか決める。

- ある観測で2F=8を得たとする。
- 重力波信号が存在しなくても、ノイズだけで2F>8を与える確率は9%ある。
- 100回似たような観測をしたら、9回は重力波が存在しなくても8以上の2F を得るということ。
- このイベントは確信を持って重力波由来とは言えない。

35

F-statisticの統計的性質がわかっていると何が嬉しいのか?: 重力波振幅の上限値を決める。

- ある観測で2F=8を得たとする。
- d² = 16.2であるような重力波信号が存在したとすると、2F<8であるような確率は 5%である。
- 重力波振幅に対する95%上限値が $h_0^{95} = \sqrt{16.2Sh}/Q$ と求まる(Qは波源の方角 など振幅以外のパラメータに依存するO(1)の数)。
- 100回似たような観測をしたら5回は8以下の2Fを得るような重力波振幅がQh₀95。

F-statisticの統計的性質がわかっていると何が嬉しいのか?: False alarm rate と False dismissal rate

- 青が信号無しのときのDetection statistic (今は2F)の確率密度分布、赤が信号ありのと きの確率密度分布とする。
- Detection statisticの閾値を2F_{threshold}と事前に定めておくと
 - 薄紫色の面積がFalse alarm rate (FAR: ノイズを信号と誤判断してしまう確率)を与える。
 - 薄赤色の面積がFalse dismissal rate(FDR: 信号を誤って見落としてしまう確率)を 与える。
 37

- パルサー探索でのF-statistic:ここまでのまとめ
- Pulsar search parameters: $\lceil 1 + s + 2 \rfloor + \lceil 4 \rfloor$ $f, \lambda \equiv [f, \dot{f}, \ddot{f}, \dots, \alpha, \delta], \sigma \equiv [\Phi_0, \iota, \psi, h_0].$
- F-statistic $F = F(f, \lambda)$

- Partially maximized log-likelihood log Λ Analytically maximize log Λ over $\sigma = [\Phi_0, \iota, \psi, h_0]$

- Maximize F over f and λ
 - Fast-Fourier-Transform for f (not in "LALDemod")
 - Template search for λ .
- 統計的性質がある程度わかっている。

データ解析の流れ(F-statistic coherent searchの場合)

前準備1

- 1. 地球の公転・自転運動について情報(ephemeris file)をあらかじめ得ておく (TEMPO2、LALなどのソフト)。
- 2. Known pulsar searchの場合は探索対象のパルサーの位相情報を電磁波天文学 から得ておく(重力波探索開始時の周波数・その高階時間微分がいくらかを求 める)。
- 3. Known pulsar searchでかつ探索対象パルサーが連星系をなしている場合は、連 星運動のephemerisを電磁波天文学から得ておく。
- 4. Known pulsar searchでかつグリッチが起きていた場合、位相モデルに組み込む。

前準備2

- 1. Low pass filter (step 2でのaliasing を防ぐ)
- 2. Down sample: 16kHz → 4kHz (2kHzぐらいまで探索する。データ量低減のため)
- 3. 全 T_0 分のデータを長さ τ 分のN=(T_0/τ)個のセグメントに分ける。セグメント長は、 ドップラー効果による周波数シフトが1ビンを下回るように決めている。F-statistic 計算コードの都合で長いほうが良いが、だいたい τ =30分ぐらいが限度。
- 4. 各セグメントごとにtime domainでフィルターをかけて、t=0, t=τでデータがゼロに なるようにする(step 5で余計なノイズを生成しないように)。
- 5. 各セグメントをそれぞれFourier Transformする(これをSFTと呼ぶ。)

ComputeFStatistic_v2 code (LALApps/LALSuiteのF-statistic計算コード):
1. パラメータ探索範囲を決める。(どの天域で、どのようなモデルに従う重力波を検出するか決める。)
2. 探索するパラメータ点を決める。(パラメータ空間は離散的にしか掃けないので、信号を失わないように密に、かつ計算時間がすくなくなるように疎に掃く。)
3. N個のSFTを取り込んでF-statisticを計算する。

4. 事前に設定した閾値よりも大きいFを持つイベントを記録しておく。 閾値は設定するFAR, FDRに依存する。

Veto:

- 重力波候補イベントが地球上の現象起源のノイズ(検出器起源の ノイズなど)でないことを確かめる。(例:アメリカの電源:60Hz → 60Hzとそのハーモニクスがスペクトル線として現れる。)
- 2. 他の検出器との整合性(異なる検出器で得られたパラメータセット は、互いに無矛盾か?)
- 3. "重力波信号らしい"イベントなのか?
 - a. Chi-square テスト (Itoh et al. 2004)
 - b. Terrestrial lineなら地球自転軸を通る大円上にならぶ (E@H) (ほとんどDoppler周波数ドリフトを受けない天域(自転では北・ 南極、公転では黄道の両極)があり、その方向の重力波は、もとも とDoppler周波数ドリフトを受けない地球起源の線ノイズと区別を つけづらい。)

Einstein@Home on S5, 50-1500Hz all-sky search result. (a) including known instrumental lines and hardware injections. (b) without known instrumental lines.

From the LSC einstein@home on s5 paper (2010)

重力波発見:

- 1. 候補イベントが"すべてのテスト"をパスしたら、検出。
- 2. パラメータの確率分布を与える。「(ベイジアンの場合は、)重力波振幅はこれこれの確率でこの範囲に入る。」
- 3. パラメータの確率分布はMCMCなどで決定。
- 4. イメージとしては下図の感じ。(Hardware injectionに対してtime domain Bayesian analysisでおこなったもの。LSC2010)

Setting upper limit:

- 1. 候補イベントが棄却されたら重力波振幅の上限を与える。
- 「この天域ではこの周波数領域には、これこれの性質を持つ重力 波は、地球に到達していたとしてもxxパーセントの確率でこれ以下 の振幅しか持たない。(これこれの振幅を持っている信号が到達し ていたとしていたら、我々はxxパーセントの確率で検出していたは ずだ。)」
- 2. 上限を与えるためには、F-statistic(か、使用したdetection statistic)の統計的 性質(=ノイズの統計的性質)を知る必要がある。
- 3. モンテカルロシミュレーションでノイズの統計的性質を求める。
 - 振幅の上限を与えるパラメータ領域から少しずれたパラメータ領域に、ある重力波振幅を仮定してソフトウェアインジェクションをX回おこない、 2F_{simulation}を計算する。X個の2F_{simulation}を得る。
 - X個の2F_{simulation}のうち、xx個が実測の2Fを下回るようなoptimal signal to noise ratioを与える振幅を計算する。これがxx/Xパーセント上限値を与える。
- 4. ちなみにknown pulsar searchでノイズがガウスノイズの場合、1% FAR, 10%FDR を仮定すると、振幅以外のパラメータを平均したときの振幅の上限値は以下 の式で与えられる。

$\langle h_0 \rangle = 11.4 \sqrt{S_n(f_s)/T},$

fsは重力波周波数、Tは積分時間、Snは検出器ノイズパワースペクトル、数値11.4は仮定したFAR,FDRに依存する。

広帯域・広天域探索の問題

- Known puslar searchはcoherent search (F-statisticやtime-domainでの探索で問題無い。)
- 広周波数帯域、広天域探索では計算量が多 すぎるという問題が起こる。

どれくらい細かく天域を見ていく必要があるのか=波源方向の推定精度

- 1つの周波数ビンに全てのパワーを集めたい。
- ・ 周波数ビンは1/(積分時間)で細かくなる。
- 検出器出力を単純にフーリエ変換すると、空のn方向にある周波数foの波源は
 時間に依存するDopplerドリフトで

$$f = f_0 \left(1 + \frac{\vec{v}(t) \cdot \vec{n}}{c} \right)$$

の帯域で信号を生成する。

• $\Delta \theta = \overline{|\Delta n|}$ だけ波源からずれた方向を探索すると、 $\Delta f \sim \frac{|\Delta v(t)| \cdot \Delta \theta}{c} f_0$

程度周波数領域で広がった信号を得る。 $|\Delta v(t)|$ は観測時間中の地球の公転・自転速度変化の大きさ。

- f₀(Δv/c)(Δθ) < 1/Tの精度で天域を探索する必要ある。
- あるいは、方向決定精度は、

$$\Delta \theta < \frac{1}{f_0 \left(\frac{v_{orb}}{c}\right) w_{orb} T^2} \sim 10 \operatorname{arcsec} \left(\frac{10^6 s}{T}\right)^2 \left(\frac{100 \text{Hz}}{f_0}\right)$$

注:回折限界~2秒角@100Hz

• あるいは探索すべき(= de-modulationすべき)空の方向は $4\pi/\Delta\theta^{-T^2}$ で増えてい $\langle \cdot \rangle$ 。

計算量の問題

• Template search:

spin down parameters & source sky position.

 $\lambda \equiv [\{f^{(k)}\}_{k=1}^{s_{\max}}, \theta, \phi].$

Number of templates (T: integration time):

$$\mathcal{N} \propto \int d^n \lambda \sqrt{g} \sim O((fT)^2) \prod_{k=1}^{s_{\max}} f^{(k)} T^{k+1}$$

- LIGO S2 wide-band all-sky coherent search:
 - Less than 800CPUs (2GHz), less than 1month analysis time, all-sky, 160-730Hz → 10 hours LIGO data.
- 解析時間がたとえばT⁴で増えるアルゴリズムを採用した、1
 日分のデータを解析するのに1日かかるコードを使うと、1月
 分のデータを解析するのにかかる時間は30⁴ = 2000年ぐらい。

計算量を減らすエ夫と 計算能力を獲得するエ夫

- ・減らすエ夫
 - Sphere covering problem
 - Random template bank (Messenger, Prix & Papa 2008)
 - Incoherent search
- 獲得するエ夫
 - Einstein@Home (http://einstein.phys.uwm.edu/)

Sphere covering problem.

$$N_p = \theta m_{\max}^{-n/2} \sqrt{g} \int_{\mathbb{P}} \mathrm{d}^n \lambda,$$

p

Prix 2007.

Hough Transform (used in GW community as well)

- Assume a master equation y = f(x; p_i) with M parameters p_i.
- Given N>M pair of "data" (x_k, y_k), we obtain N curves in the M-dim param. space.
- If there is no noise, and if the master equation is correct, we get a solution as an intersection of the curves in the parameter space.
- When there is noise, there may be no solution.
 Yet, there may be a region where many intersections between two curves cluster.

Hough Transform (example) <u>Straight line master eq.</u>

For the rightmost data, plot a master equation (straight line in this example) that pass through the data.

Do the same for the second data.

Move on to the parameter space.

Master eq. $y = a^*x + b$

If there is no noise, we have "the" solution.

NOTE: Correct equation is y = 0.2 x + 0.1

There is no "solution". Yet the intersections cluster (hopefully) around the true value.

Do it many times....

57

Even when b is random variable

58

Example: Semi-parametric HT on NFW profile.

59

Re-examining Toy model using Hough Transform

Fit $1000 \log_{10}\rho(r)$ toy-data using a master equation

$$\log_{10} \rho(r) = a \log_{10} r + b$$

The parameter b differs from cluster to cluster.

課題

- 計算量の少ない解析手法
 - 賢いtemplate placement? (Lattice or stochastic?)
 - 賢いアルゴリズム (FFT?)
 - 事前情報の精密化(マルチメッセンジャー)
- 計算能力の獲得
 - Einstein@Home?
 - GPGPU (伊藤科研費)
- 計算量の少ないVeto 手法
 - 伊藤の方法は計算量が多すぎて候補イベントが多いと実 用的で無い。
- 計算量の少ない結果の統計的解釈の手法
 - データがGaussianだったらなぁ。

Computation of Computational Cost & best observation configuration.

- Wish list
 - 1 year integration, 1 year analysis.
 - 2~3 spin down parameters (2nd~3rd time derivative of f).
 - Given threshold and given false dismissal rate (10% for the 1st stage, 1% for the later stage.)
- Assumed obs. configration.
 - 3 incoherent stack-slide search
 - 1 coherent follow-up
- Optimize the obs. config. parameters
 - Parameter optimization (9 params: Time-duration for each step, # of stacks in each step, allowed loss in SNR in each step).
 - Nelder-Mead downhill simplex with simulated annealing

(This is the method by Culter, Gholami & Krishnan (2005) for LIGO)

Comp. Cost & Amplitude(KAGRA)

1-year integration, 1-year analy 、All-Sky, up to 1kHz, 10-15% FA

Summary 1 (KAGRA)

 100Tflops, All-sky, fmax=1kHz, spin down age 1Myr,1-year integration, 1-year analysis, 10-15% False Alarm, √Sn(LCGT)~1.5e-23@1kHz.

$$100 \frac{\sqrt{S_n}}{1.5 \times 10^{-23}} \simeq \left(\frac{\epsilon}{10^{-8}}\right) \left(\frac{I_{zz}}{10^{45} \text{gcm}^2}\right) \left(\frac{10 \text{kpc}}{r}\right) \left(\frac{f_{\text{GW}}}{1 \text{kHz}}\right)^2$$

→ Reach: 100 pc@1kHz

Summary 2(KAGRA)

• # of pulsars:

- Birth rate = 1/(100-1kyr)? Life time = 100Myr?
 → 0.1Million pulsars/MWG? → a few within 100pc?
 Cf) 10 radio pulsars within 300 pc (ATNF catalogue)
- All-sky, r=100kpc, f=200Hz, spin down age 100Myr, 1 year integration, 1 year analysis time
- → Comp. cost = 1e28flops?

解析手法(こまかいこと)

Barycentering

- GPS time accurate through nanoseconds (recorded in Frame data)
- WGS84 earth model (rotational ellipsoid) + geoid height + orthometric height (given by Saito san for KAGRA. NOT YET OFFICIAL?)
- DE405 or DE425 JPL ephemeris
- Leap seconds taken into account.
- LSC (C. Cutler) developed a barycentering routine validated against TEMPO through 4 microsecons level (0.01 radians phase offset, or 1e-4 fractional loss in SNR). Roemer + Shapiro + Einstein, but not including tropospheric effect and solar plasma delay.
- KAGRA には独自のtiming routineは無いらしい。

Short Fourier Transform

- 非定常性、データのギャップに対応するために、データを1800秒ごとにフーリエ変換したものを作り、Short Fourier Transformファイルと呼ぶ。
- F-statiticなどは複数のSFTファイルをCoherent につなぎ合わせて求める。

Data Conditioning (Stationarity)

- 1800秒ごとに分けてShを評価。
 - 1800秒で良いというシステマティックな評価は見たことない。
 - 計算効率上はSFTの長さは長い方が良く(SFTファ イル数をMとすると、計算量Mlog M)、ただし、
 Doppler 変調による周波数変化が1周波数ビン以 上にならない程度にしたい。
 - Incoherent search のSNRはStack数をMとすると、 1/M^(1/4)。

The H1 data

Data Conditioning (line noise)

- 大振幅のline noiseは実験家と密に連絡取って取り除く必要ある。
- Pulsar グループは数日以上のデータを積分する。つまり、大抵の場合、小振幅のline noiseを発見するのはpulsar グループで、かつその発見は忘れられる。実際何本かvetoできない。
- 事前に分かっているline noiseの存在するバンドは、解 析から除く。たとえば、Doppler demodulationの影響 避けるために、近傍周波数のShを持つようなガウスノ イズと置き換える。
- A. Sintesの除去方法もあるらしいが、使っていなかった。
Data Conditioning (line noise)

- LSCにはソフトがいっぱい。問題は使い勝手。
 - F-scan by R. Dupius and others.
 - Gaby が推薦?
 - Running median based line tracker.
 - 3つのコードがあり、Python, Matlab, C++ で書かれている。
 Multichannel 間のcoherence を計算するコードあり。
 - GUI 無し。
 - データベースと連携、サマリーページ有り。
 - ロックしてようがいまいが構わずline hunting するらしい。
 - 実験家との連携が課題。
- KAGRA detcharでF-scanの移植もしくは、line noise trackerの開発が課題。伊藤がやることに なったが手つかず。

Data Conditioning (Noise estimate)

- Running median によるノイズフロアの評価を 1800 秒SFTそれぞれについておこなう。
- Medianはパワースペクトルのバイアスされた 推定量なので、補正する。(Gaussianノイズに ついては、解析的に補正量が求まる。Cramer の"Mathematical Methods of Statistics"参 照。)

Interpret results (veto)

- Global correlationを使う。
 - 地上起源のラインは黄道座標の極と赤道座標の 極を結ぶ大円上に乗りやすい(Prix & Itoh 2005)。 自転と公転によるDoppler 効果が最小になるから。
- Itoh et al. (2004)の波形テストを使う。

 一計算時間が大量にかかる。

Global correlation

Taken from Einstein@Home web page.

New in S2: Frequency domain cluster identification

At a fixed R.A. and Dec.

New in S2: F statistic shape veto

Interpret results (Statistical assessment, non-Gaussianity and Monte-Carlo)

- If the data is Gaussian, we use analytic probability distribution to have a statistical interpretation of the result.
- K-S test says it is Gaussian almost always. But we conducted MC anyway.

Gaussian ??

解析手法 (比較的最近の

Heterodyne, Band-limit, Downsample

- LALDemod routineはN^2-routine。
 - Known pulsar探索ではFFTを使う意義が薄い。
 - 周波数と相関する他のパラメータとの兼ね合い。
- 広帯域探索ではFFTを使いたい。
 - Einstein@Homeなどでは、データ量を減らしたい ので、Complex heterodyne + band-limit + downsampling (1/60Hz).
 - 空の各方向について、Barycentric resamplingが 必要になる。

Template placement

- Lattice template placement
- Random template placement
- Stochastic template placement

解析チーム (KAGRA)

Software engineering

- RESCEU Project Management Server
 - <u>https://vt001.resceu.s.u-tokyo.ac.jp/</u>
- Start developing KAGRA Algorithmic Library - "KAGALI" (篝火)
 - C-coding style guide with hopefully useful tools
 - Available from the RESCEU PMS.
 - Introduced in the "Boot-camp" 6/28-29 @
 Oosaka-City U.

"Boot Camp" June 28, 29 @ Oosaka City U.

https://yukimura.hep.osaka-cu.ac.jp/wiki/pages/h197q9t/Boot_Camp_2013.html

Aim of "Boot Cam

- face to face meeting (PDs, Students, Proposed-research researchers)
- 25 participants
- Discussion on how to proceed the A04 research
- Find possibilities of collaboration among project and proposed researches.
- Introduction of "KAGALI"

名前	所属
横澤 孝章	大阪市大
有馬 司	大阪市大
神谷 慶	大阪市大
譲原 浩貴	大阪市大
浅野 光洋	大阪市大
神田展行	大阪市大
山本尚弘	大阪市大
田中一幸	大阪市大
鳥谷仁人	大阪市大
端山和大	大阪市大
横山順一	東大RESCEU
枝 和成	東大RESCEU
伊藤洋介	東大RESCEU
中野 将也	富山大
廣林 茂樹	富山大
西澤篤志	京大
上野 昂	阪大
成川 達也	阪大
田越秀行	阪大
高橋 弘毅	長岡技術科学大学
辰巳大輔	国立天文台
大原謙一	新潟大
平沼悠太	新潟大
金山雅人	新潟大
若松剛司	新潟大

Project management server@RESECU https://vt001.resceu.s.u-tokyo.ac.jp

- Joint Development of data analysis softwares needs
 - version control: git
 - Proect management: redmine
 - Continuous integration: jenkins
- Alminium: a package includes all.
 - Established a project management server (PMS) at RESCEU.

[RESCEU-PMS]

Current

- Nightly update by cron
- KAGRA DAS white paper
- KAGALI coding standards
- Plan
 - Nightly back-up (amanda/bacula/rsync ...)
 - KAGALI/LAL/GSL/FFTW3
 - Joint development
 - Nightly build by Jekins
 - Control by alminium

KAGRA Data Analysis School @ RESCEU 2013

- September 27 (Fri.) 10:00 and 28 (Sat.) ~ 17:00
- RESCEU, University of Tokyo
- Continuous Gravitational Wave search
- Lecture on GW from neutron stars by Kojima san, and pulsar timing by Dr. Rutger van Haasteren (AEI Hannover)