








































Detecting Gravitational Waves

Problem 1

Linearized Gravity: transverse-traceless and Lorenz gauge

We linerarize gravity by assuming that the metric perturbations are small
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| ⌧ 1 . (1)

In class we derived the Riemann curvature, Ricci curvature and Ricci scalar up to 1st order:
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The Einstein curvature, as always, is given by

G
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Gauge transform

We have also seen that the Riemann curvature is invariant under gauge transforms
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, (4)

i.e. the Riemann curvature has a direct (measurable) physical meaning. The invariance of the

Riemann curvature of course also implies the invariance of the Ricci curvature, Ricci scalar and

Einstein curvature.

1 Lorenz gauge or harmonic gauge

The Lorenz gauge is defined by
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Show that this results in the Einstein equation
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In vacuum, any solution can be written as superposition of plane waves
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with k

l = (w, w~n). We can always pick ~n = ˆ

e

3

. Show that for such a plane wave solution the

four Lorenz gauge constraints (equation 5) imply
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2 Trace-reversed Lorenz gauge

Repeat the previous problem with the trace-reversed strain in Lorenz gauge,
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The Lorenz gauge condition and Einstein equation become
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Again looking at a plain wave in 3-direction in vacuum, show that
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3 Transverse-traceless gauge

In vacuum the transverse-traceless gauge is defined by
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Show that the corresponding Einstein equation in vacuum is
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The gauge transform from Lorenz to TT gauge is given by
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In vacuum, any solution can again be written as superposition of plane waves
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with k

l = (w, w~n). Show that for a plane wave solution with frequency w traveling in ~n = ˆ

e
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which implies
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4 From Lorenz to transverse-traceless gauge (h
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)

Show that for a plane wave solution traveling in an arbitrary direction ~n, this result (equation 17)

for the spatial components can be written as
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where the projection operator P
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is given by
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5 From trace-reversed Lorenz to transverse-traceless gauge (
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For plane-wave solutions in arbitrary direction ~n, show that the following also is true
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Again specializing to ~n = ˆ

e
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, show that this implies
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which is worth remembering.
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