Review

- Special Relativity ín unifemuly $\gamma=\frac{1}{\sqrt{1-v^{2}}}$ accelersted frumue

$$
\begin{aligned}
& \Rightarrow \text { spacitine interval: } \\
& \qquad-\Delta \tau^{2}=-(1+a \bar{x})^{2} d t^{-2}+d x \quad \Rightarrow g_{\alpha \beta}^{-2}=\left(\begin{array}{cc}
-(1+a \bar{x})^{2} & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

"Geneme Relatinity: -locally: speial Kelativity
$\begin{aligned} \text { "Henemb Relatuinfy: } & \text { 'locally: special Relativity } \\ & \text { - tidal porces relote different points } \\ & \Rightarrow \text { gravity is Geomatior }\end{aligned}$

$$
\Rightarrow \text { gravity is Yeometioy }
$$

- Geodesic equation:

$$
\begin{aligned}
& \nabla_{j} \dot{j}=0 \Leftrightarrow \ddot{\gamma}^{\mu}+\Gamma_{\alpha \beta}^{\mu} j^{\alpha} j^{\beta}=0 \\
& \Gamma_{\alpha \beta}^{\mu}=\frac{1}{2} g^{\mu \nu}\left(g_{\nu \beta, \alpha}+g_{\alpha \nu, \beta}-g_{\alpha \beta, \nu}\right)
\end{aligned}
$$

- in 20: Gauss Corveture \Leftrightarrow Parelde tronsport alang
closed errue F
in 30 : Rrimman larvature: josepick 2-D soli-plana!

$$
\begin{aligned}
& \Rightarrow R_{\beta, \nu}^{\alpha}=\Gamma_{\nu \beta, \mu}^{\alpha}-\Gamma_{\mu \beta, \nu}^{\alpha}+\Gamma_{\mu \alpha}^{\alpha} \Gamma_{\nu \beta}^{\alpha}-\Gamma_{\nu \mu}^{\alpha} \Gamma_{\mu \beta}^{\alpha}
\end{aligned}
$$

Einstein equation
-We start in aregime where Nartans is valid: $\Delta \phi=4 \pi 45$ (*)

$$
\Rightarrow p=0, v<c c, \phi<c c^{2}
$$

$$
a=-\nabla \phi
$$

We want to male $f(*)$ manifestly y covariant:

-start with 4-velocity; at rest. wat at. to the surovonding dist (S ,pol)
Compare: (spatial transport Ilex after time evolution)
(time evolution offer spatial transport)

$$
\begin{aligned}
\Rightarrow \Delta U^{N} & =-\Delta x \cdot \Delta t \cdot R_{010}^{\mu} \\
& =R_{001 \Delta x \Delta t}^{N}
\end{aligned}
$$

'Now-we do the same thing with Nerolea:

where $v^{i}=a^{i} \cdot \Delta t=-\frac{\partial}{\partial x i} \frac{\partial}{\partial x^{i}} \phi \cdot \Delta t \cdot \Delta x^{\prime}$

$$
\Rightarrow \Delta v^{\mu}=v_{1}^{\mu}-v_{2}^{\mu}=\binom{0}{-v^{i}}=\binom{0}{\Delta t \Delta x^{\prime} \frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{\prime}} \phi}
$$

\Rightarrow We conclode: $\frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{i}} \phi=p_{0}^{i} j_{0}$
i.e. the Rienenn tervature exactly encodos the
physical aspect of the gravitalioxal field; tidel effects!
Moneover: $\Delta \phi=\sum_{i=1,2,3} R^{i}$ oio $\equiv R^{\mu}$ opo

$$
=: R_{o o} \text { (R Rieicicorvature, }
$$

$$
\Rightarrow \begin{aligned}
& R_{0, p 0}^{N}=4 \pi \zeta \zeta \\
& \rho=0, v<c \sigma, \phi<c 1
\end{aligned}
$$

Ricei corvatane

We can sum oner a pair of indicer (or contract) the Riemann (urvaton
Ricui $R_{\mu \nu}:=R^{\alpha} \mu \nu \quad$ (joss as ve did leproe)
Note: $R_{\text {apr }}^{\alpha}$ has a number of bymmetries, As a resiolt the Rica' corvatane is the only non-trival contraction of the Riemonn tenvor (upto asign).
Rici-sculari: trace of Ricci-curvatire: $R=R_{\mu}^{\mu}=R_{\alpha N}^{\alpha N}$
\Rightarrow We thas have for $p=0, v<c c, \phi<1 ; R_{00}=4 \pi 4 T_{00}$莫 ρ Energy-mowna
\Rightarrow lst guess: $\quad R_{\mu \nu}=4 \pi 4 T_{\mu \nu} \quad \forall \mu, v$! tensor

Problem: Erengy-momentain coservalia: $T^{\mu \nu}$ iv $=0$

$$
\Rightarrow R_{i \nu}^{\mu \nu}=0
$$

(recall E.H. ${ }_{\text {iN }}^{N}=0 \Leftrightarrow$ charge consem
itbentity that $\rightarrow 11$
is always true $\frac{1}{2} R_{i \mu}=0 \Rightarrow T_{, \mu}=0 \Rightarrow$ The troce of $T^{\mu \nu}$ is constant over spuce d tinue!

$$
\Rightarrow g-3 p=\text { cont }
$$

Solution: Einstein-lurvalome obvicusly wrong...

$$
\Rightarrow G_{\mu \nu}=8 \pi 4 T_{\mu \nu} .
$$

Einstecir equation
Note: Nax -linear \Leftrightarrow self-gradify!

The meaning of Einstein's eqn.
We sen $\quad R_{00}=4 \pi q(\rho)$ for $p=0$

$$
\text { nov } \Rightarrow \quad R_{0_{0}}=4 \pi 4(\rho+3 p) \quad \text { arp } p \neq 0
$$

Why? : $T_{G_{N \nu}}=R_{\mu \nu}-\frac{1}{2} R_{g_{N \nu}}=8 \pi G T_{\mu v}$
\Rightarrow tace: $-\frac{1}{4} R=8 \pi a T$

$$
\begin{aligned}
\Rightarrow R_{\mu \nu} & =8 \pi q\left[T_{\mu \nu}-\frac{1}{2} T_{g_{\nu \nu}}\right] \\
\Rightarrow R_{00} & =4 \pi q[\rho+3 p] \quad ; T=-\rho+3 \rho_{\perp}
\end{aligned}
$$

\Rightarrow a) Pressure also acts as a source for gravity!

Example

- Imagine a box, with its semfoce traced ant by test portides, all initially at rest \& pred floating:

$$
V=l_{x} \cdot l_{y} \cdot l_{z}
$$

initial conditions: $\varrho_{x}=0$

$$
i_{y}=0
$$

$$
e_{2}=0
$$

- There might be some matter with s \&p in that box.
- Tidal farces: $\ddot{e}_{x}=-R_{0}^{\prime} 10 l_{x}$

$$
\begin{aligned}
& \ddot{e}_{y}=-R^{2} 020 \quad e_{r} \\
& \ddot{l}_{2}=-R^{3} 030 \quad e_{z}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \dot{V} & =\dot{e}_{x} l_{y} l_{z}+l_{x} \dot{e}_{y} l_{z}+l_{x} l_{y} \dot{l}_{z} \quad=0 \\
\ddot{V} \mid= & =e_{x} l_{y} l_{z}+e_{x} \ddot{l}_{y} l_{z}+l_{x} l_{y} \ddot{l}_{z} \\
& =e_{x} l_{y} l_{z}\left(\frac{e_{x}}{e_{x}}+\frac{e_{x}}{e_{y}}+\frac{e_{z}}{e_{z}}\right) \\
& =-V\left(R_{010}^{1}+R_{0,0}^{2}+R_{030}^{3}\right) \\
& =-V R_{00} \\
& =-4 \pi l_{y}\left(s_{13 p}\right) V
\end{aligned}
$$

$$
\Rightarrow \frac{\ddot{v}}{v}=-4 \pi c(s+3 p)
$$

true for any such box! \} ~ e q u i v a l e n t ~ t o ~ E i n s t e i n ~ e q u a t i o n ! ~
\Rightarrow 6) "The expansion of the valance tory set of particles initidly atrent is proportional to $-(\rho+3 p)^{\prime \prime}$

$$
E M
$$

$$
4 R
$$

Local symmetry: Phase rotations lime) 'Lorentz boosts
Boost

$$
\begin{array}{l:l}
\psi_{i} \rightarrow e^{i g i \varphi(x)} \psi_{i} & V^{\nu} \rightarrow \Lambda_{\nu}^{\nu}(x) V^{\nu} \\
\text { local! ie. } \varphi(x) & \text { local! } \therefore \text { i, } \Lambda_{\nu}^{\nu}(x)
\end{array}
$$

- lovariont derivative
tocompare different
locations:

Physcinal field (gaogpiede)

$$
\begin{aligned}
& {\left[O_{\mu}, D_{\nu}\right] \psi_{i}=-i g_{i}\left[\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\nu}\right] \psi_{i} \quad\left[\nabla \nu, \nabla_{\nu}\right] \frac{\partial}{\partial \alpha^{\alpha}}=R_{\alpha \rho \nu}^{\beta} \frac{\partial}{\partial x^{\beta}}} \\
& =-i q_{i} F_{\mu \nu} \psi_{i} \\
& \left.\begin{array}{c}
\uparrow \\
\left(\begin{array}{c}
E_{x} E_{2} E_{2} \\
0 B_{z} \\
0 \\
\text { a.3. } \\
0
\end{array}\right] \quad B_{x}
\end{array}\right) \\
& \text { tidal gravity terms! }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - gauge-lovariant } \\
& \text { derivative } \\
& \text { (llevi-livita) revariant } \\
& \text { derivative } \\
& 0_{\mu} \psi_{i} \equiv\left(\partial_{\mu}-i \psi_{i} A_{\mu}\right) \psi_{i}: \quad \nabla_{\mu} \frac{\partial}{\partial x^{\nu}}=\Gamma_{\mu \nu}^{\lambda} \frac{\partial}{\partial x^{\alpha}} \\
& \nabla_{\mu} v^{\nu}=\partial_{\nu} v^{\nu}+\Gamma_{\mu \lambda}^{\nu} v^{\lambda}
\end{aligned}
$$

Gravitation a Waves in
Linearized Gravity

- We want to know What type of wave solutions General Relativity supports. In other words, we ane looking fee solutions to Eistecix's equation in the form:
- $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \quad$; with $\quad\left|h_{\mu \nu}\right| \ll 1 \quad$ (linearized Gravity,

$$
\cdot h_{\mu \nu}=A_{\nu \nu} \cdot e^{i\left(-\omega t+\vec{k} \vec{x}^{\prime}\right.}=p_{p \nu} e^{i k x^{\mu}} \quad ; k^{N}=\left(\begin{array}{c}
w \\
0 \\
\vdots
\end{array}\right) ; k_{\mu}=\left(\begin{array}{c}
-w \\
0 \\
0 \\
k
\end{array}\right)
$$

ie we pick a plane wave moving in +2 direction

- Christopher symbol:
- Riemann Curvature

$$
\Rightarrow \Gamma^{R^{\alpha}} \text { stander in } h
$$

$$
\begin{aligned}
& R_{\beta \mu \nu}^{\alpha}=\Gamma_{\nu \beta, \gamma}^{\alpha}-\Gamma_{\mu \beta \nu}^{\alpha}+\underbrace{\Gamma^{\alpha} \Gamma^{\alpha}-\Gamma^{\alpha} \Gamma^{\alpha}}_{\text {2N order in } h!} \\
& =\frac{1}{2}\left[i h^{\alpha}{ }_{\beta,} \nu_{j p}+{ }_{1} h_{\nu}{ }^{\alpha} \beta_{\beta p}-A_{\beta \beta}{ }^{\alpha}{ }^{\alpha}{ }^{\alpha}\right. \\
& \left.:-R_{\beta, \mu, \nu}^{\alpha}, R_{\mu}^{\alpha}{ }_{1 \beta_{1} \nu}+R_{N \beta, 1,}{ }^{\alpha}\right] \\
& ={ }^{-}{ }^{-} \\
& =\frac{1}{2}\left[R_{\nu}{ }^{\alpha}{ }_{1 \beta, N}-R_{\nu \beta}{ }^{\prime \alpha}{ }_{1 N}\right. \\
& \left.-h_{\mu}{ }^{\alpha}, \beta, \nu+h_{\mu} \beta^{\prime \alpha}, \nu\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma_{\mu \nu}^{\alpha}=\frac{1}{2} g^{\alpha \lambda}\left(g_{\lambda \nu}, p+g_{\mu \nu \nu}-g_{\mu \nu \lambda}\right)
\end{aligned}
$$

finally, the Rici lorvertane

$$
R_{\mu \nu}=R_{\mu \alpha \nu}^{\alpha}=\frac{1}{2}\left(h_{\nu}^{\alpha}{ }_{\mu, \alpha}^{\alpha}+h_{\mu, \alpha, \nu}^{\alpha}-R_{1 \mu, \nu}-\square h_{\mu \nu}\right)
$$

and for completeriess:

$$
R \equiv R_{\mu}^{\mu}=h_{N \nu \nu}^{\mu \nu}-\square h^{l^{\text {hacu, } R_{N}^{\mu}}}
$$

\Rightarrow Eirstein curvatune

$$
\begin{aligned}
G_{N \nu}= & R_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} R \\
= & \frac{1}{2}\left(h_{\nu}^{\alpha}{ }_{1 N_{\nu \alpha}}^{\alpha}+h_{\mu, \alpha, \nu}^{\alpha}-R_{\mu, \nu}-\square h_{\mu \nu}\right. \\
& -\eta_{\mu \nu} h^{\alpha \beta_{\alpha, \beta}}+\eta_{\mu \nu} \square h
\end{aligned}
$$

Why is this stille so complicated?

- Ware eqn.
- ensure that $G_{\mu \nu}^{\nu \nu}=0$
- Remaining freedon to pick coovdicieles, quuge symuctry a.,

Linear gravity and Gauge symmetry
Recall:- We are allowed to choose a new set of coordinates \tilde{y}^{α}.
The metric will change as $\tilde{g}_{\alpha \beta}=\frac{\partial x^{\mu}}{\partial y^{\alpha} \alpha} g_{\mu \nu} \frac{\partial x^{\nu}}{\partial y^{\beta \beta}}$

- This is also true for Linear Gravity -a slog as we dona vidate $\left|\tilde{h}_{\text {dp }}\right| \ll \mid$.
, Define $\xi^{\prime \prime}\left(x^{\mu}\right):=\left[\hat{y}^{\mu}\left(x^{\mu}\right)-x^{\mu}\right] \quad \Rightarrow x^{\nu}=\tilde{y}^{\mu}+\xi^{\mu}\left(y^{\mu}\right)$ new coordinds old coordinates

$$
\begin{aligned}
& \Rightarrow \frac{\partial x^{\mu}}{\partial \tilde{y}^{\alpha}}=\frac{\partial\left(\tilde{y}^{\alpha}+\xi^{\alpha}\right)}{\partial \tilde{y}^{\alpha}}=\delta_{\alpha}^{\alpha}+\xi_{j}^{\mu} \\
& \Rightarrow \text { Demiond that }\left|\xi_{1 \alpha}^{N}\right| \ll 1 \\
& \Rightarrow \hat{g}_{\alpha \beta}=\eta_{\alpha \beta}+\tilde{h}_{\alpha \beta}=\left(\delta_{\alpha}^{N}+\xi_{, \alpha}^{N}\right)\left(g_{\nu \nu}+h_{\nu \nu}\right)\left(\delta_{\beta}^{\nu}+\overline{\xi_{\beta}^{\nu}}\right) \\
& =\underbrace{\prod_{\alpha \beta}}_{0^{v o r} \text { order }}+\underbrace{\hat{L}_{1 \beta}+\xi_{\alpha, \beta}+\delta_{8, \alpha, \alpha}}_{\text {Iss order }} \\
& \text { + higher order- } \\
& \Rightarrow \tilde{h}_{\mu \nu}=h_{\mu \nu}+\xi_{\mu, \nu}+\xi_{\nu, \mu}
\end{aligned}
$$

Linearized coordinate change E symmetry!

How do $\Gamma^{\alpha}{ }^{\alpha} v, R_{\beta \nu v}^{\alpha}, R_{p v}, R$, Gpv $_{p}$ change under this transfermeling

$$
\begin{aligned}
\cdot S_{\mu \nu \nu}^{\alpha}=\Gamma_{\mu \nu}^{\alpha}-\Gamma_{\mu \nu}^{\alpha} & =\frac{1}{2}\left[\xi_{\nu, \nu}^{\alpha}+\xi_{\nu / \mu}^{\alpha}+\xi_{\mu, \nu}^{\alpha}+\xi_{\mu, \nu \nu}^{\alpha}-\xi_{\nu, \nu}^{\alpha}-\xi_{\nu, \mu}{ }^{\alpha}\right] \\
& =\xi_{\mu, \nu}^{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \delta R_{\beta \mu \nu}^{\alpha}=\delta \Gamma_{\nu \beta / \mu}^{\alpha}-\delta \Gamma_{\mu_{\beta, \nu}}^{\alpha} \\
& =\xi_{, \nu, \beta, \omega}^{\alpha}-\xi_{\mu / \beta, \nu}^{\alpha}=0 \quad \Rightarrow \delta \beta_{\mu \nu}=0 \\
& \delta R=0 \\
& 5 \varepsilon_{r 0}=0
\end{aligned}
$$

\Rightarrow Compare to Electro-Maguetism:

$$
\begin{array}{cl}
E M & G R \\
A_{\mu} & \Gamma_{\mu \nu}^{\alpha} \quad \Rightarrow \text { gavge-dependant } \\
\vec{E}, \vec{B}\left(o r F_{\mu \nu}\right) & R_{\beta \mu \nu}^{\alpha} \Rightarrow \text { physical quaetitios } \\
&
\end{array}
$$

Plane Gravitational Wares

We are looking for a vacoum-solation $\left(R_{\mu \nu}=0\right)$ of the fosse

$$
\begin{gathered}
k_{\mu \nu}=H_{\mu \nu} e^{i k_{\alpha} x^{2}} k^{\nu}=\left(\begin{array}{l}
\omega \\
0 \\
k
\end{array}\right) \\
\Rightarrow R_{\mu \nu}=0 \quad \Rightarrow 0=\frac{-1}{2}\left(H_{\nu}{ }^{2} k_{\mu} k_{\alpha}+H^{2} \mu k_{\alpha} k_{\nu}-H k_{\mu} k_{\nu}-R^{2} H_{\mu \nu}\right)
\end{gathered}
$$

What conshmits we thee for Hov, k"?
a) Use our gauge freedom!: $h_{p \nu} \rightarrow h_{p \nu}+\xi_{p, \nu}+\xi_{\nu, p}$

$$
\text { i) } h_{00} \rightarrow h_{00}+2 i \xi_{0} k_{0} \Rightarrow \frac{\xi_{0} g=\frac{-k_{00}}{2 i k_{0}}}{\Rightarrow k_{00}^{2}=0}
$$

$$
\text { ii) } \begin{aligned}
h_{o v} \geqslant A_{0 i}^{\prime}+i \xi_{0} k_{i}+i \xi_{i} k_{0} & \Rightarrow \xi_{i} \cdot \frac{-\left(A_{i}-1 i \xi_{0} k_{i}\right)}{i k_{0}}
\end{aligned}
$$

b) Passible modes in a metric theory:

i)

scalar trassuers longitudinal

$$
x \& y
$$

ii)
iii)
iv)
misting scalar - tensor theories (massless)
Nate: trace $\mathrm{H}_{2}=0 \Rightarrow$ trice loss

- transverse - trace loss gauge

$$
e, g \cdot h_{1}: R_{11}=-\frac{1}{2}\left[0+0+0-R^{2} H_{\mu}\right]=\frac{R^{2}}{2} a_{+}=\frac{\vec{k}^{2}-\omega^{2}}{2} h_{+}
$$

ii) e.g. $R_{\theta_{0}}=-\frac{1}{2}\left[\frac{0+0_{+}}{-2 h_{s}} \omega^{2}-0\right]=\omega^{2} a_{s}=0$

$$
R_{\mu \nu}=\left(\begin{array}{cccc}
\omega^{2} & 0 & 0 & -k w \\
0 & \left(\vec{k}^{2}-\omega^{2}\right) / 2 & 0 & 0 \\
0 & 0 & \left(\vec{k}^{2}-\omega^{2}\right) / 2 & 0 \\
-k \omega & 0 & 0 & k^{2}
\end{array}\right) h_{s}
$$

\Rightarrow no wove salution

Similas: $\left.\begin{array}{c}i r\end{array}\right)$

$$
R_{\mu \nu}=\frac{1}{2}\left(\begin{array}{cccc}
w^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\omega^{2}
\end{array}\right) h \quad \omega=0 \Rightarrow \text { nowave solation }
$$

iv) e.g. fer h_{x}

$$
R_{\mu \nu}=\frac{-1}{2}\left(\begin{array}{cccc}
0 & k_{\omega} & 0 & 0 \\
k_{\omega} & 0 & 0 & -\omega^{2} \\
0 & 0 & 0 & 0 \\
0 & -\omega^{2} & 0 & 0
\end{array}\right) R_{c} \Rightarrow \Rightarrow_{\omega}=0 \Rightarrow \text { ne weme solution }
$$

Effect of Gravitational Wares on test particles
We firt caliolate in the tronsverse-traverles goage.
Setap:

$$
h_{p r}=h_{+}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) e^{i\left(k_{z}-w t\right)}=H_{\mu \nu} e^{i k_{\alpha} x^{\alpha}} k_{\alpha}=\left(\begin{array}{c}
w \\
0 \\
\alpha
\end{array}\right)
$$

a) effect on single test partide: yeodesic motian,'

$$
x^{\prime \mu}+\Gamma_{\alpha_{\beta}}^{\alpha} x^{\alpha} \dot{x}^{\beta}=0
$$

ansume the partide is inifisilly of rest, i.e. $x^{\alpha}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$ at $t=0$

$$
\begin{aligned}
\Rightarrow \ddot{x}^{N} & =\Gamma_{s_{0}}^{N} \\
\ddot{x}^{i} & =\Gamma_{0_{0}}= \\
& =\frac{1}{2}\left(h_{i 0,0}+h_{0 i}, 0-h_{00, i}\right)=0 \\
& \Rightarrow x^{\alpha}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \text { alloays! }
\end{aligned}
$$

i.e. testportisles donot infersect with grow Wave,'
b) $\frac{\text { light traveltine }}{0 K}$

$$
\square \longrightarrow]
$$

$\xrightarrow{x} \quad$-along x-arm:

$$
\begin{aligned}
& -d \tau^{2}=0=g_{01} d r^{2}+g_{1} d x^{2} \\
& \Rightarrow \\
& \Rightarrow t^{2}=\left(1+h_{1}\right) d x^{2} \\
& d t=\left(1+\frac{h_{t}}{2}\right) h_{x} \quad d y-a m x: d t=\left(1-\frac{h_{t}}{2}\right) d y
\end{aligned}
$$

- anaming $\omega \ll \frac{2 \pi}{\tau_{\text {cight }}} \Rightarrow \Delta t_{x}=\frac{h_{1}}{2} L \quad \& \Delta t_{y}=-\frac{h_{4}}{2} L$

$$
\text { inferena } \Rightarrow \Delta t=\Delta t_{x}-\Delta t_{y}=h_{+} L
$$

Note: While both calculations a) \& b) were gaoge-dependent, the result is net: The separation between inertial test particles is affected by the gravitational wave!
ice.: $q_{00}=-1 \quad \& \quad q_{11}=g_{22}=g_{33}=1 \Rightarrow$ light travel tine:

$$
0=900 d x^{2}+g_{11} d x^{2} \Rightarrow d t=d x
$$

\Rightarrow uncharged!
Pat: Single pantile motion:

$$
\begin{aligned}
\ddot{x}^{i} & =-\Gamma_{00}^{i} \\
\Rightarrow \ddot{x}^{\prime} & =-\frac{1}{2}\left(h_{0 i, 0}+h_{i 0,0}-h_{00, i}\right)=-h_{0 i, 0} \\
& =\left[\frac{i h_{1}}{2} \omega \times(-i \omega)\right]=-\frac{\omega^{2} h_{+x}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& x^{\prime}=\int d t / d t x^{\prime \prime}=\frac{h+x}{2} \\
& =
\end{aligned}
$$

\Rightarrow In words: The light travel time to the coordinates $x-L$

$$
\text { similar } y=-\frac{h_{+} y}{2}>x-y=\ell_{+} L
$$ is unchanged, hut the tentporticle nor fuels a x-diem force:

$$
\begin{aligned}
& \text { Example: Loose a different gave: } \\
& \begin{array}{l}
\operatorname{sed} x^{\text {new }}=x^{\text {eld }}\left(1-h_{+} x\right) \\
x^{\text {new }}=y^{\text {eld }}\left(1+\frac{h_{2}}{2} x\right)
\end{array} \text { pick: } \xi_{: 0}^{\mu}=\frac{h_{+}}{2}\left(\begin{array}{c}
0 \\
-x \\
y \\
0
\end{array}\right) \text {; where } h_{+}=H_{+} e^{i k_{2} x^{\alpha l}} \\
& \xrightarrow{v} \quad \Rightarrow h_{t, 0}=i k_{0} h_{1}=-i \omega h_{+} \\
& \begin{array}{l}
\Rightarrow h_{1,0}=i k_{0} h_{1}=-i \omega h_{+} \\
h_{+3}=i k_{3} h_{+}=i k h_{+}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& h_{t, 1}=h_{t, 2}=0 \\
& \Rightarrow h_{\mu \nu}=h_{\mu \nu}^{\alpha / d}+\xi_{\mu, \nu}+\xi_{\mu \nu}=\left(\begin{array}{cccc}
0 & \omega x & -\omega y & 0 \\
\omega x & 0 & 0 & -k x \\
-\omega y & 0 & 0 & k y \\
0 & -k x & k y & 0
\end{array}\right) \frac{i h_{+}}{2}
\end{aligned}
$$

This gauge is particularly useful for calculating a bar detector response:

equation of motion:
m

$$
m \ddot{x}=-k x-\mu \dot{x}+\text { Fest }
$$

$$
\text { or with } \omega_{0}^{2}=\frac{k}{m}, \gamma=\frac{\omega_{0}}{Q}, a_{e x}=\frac{F e_{m}}{n}
$$

$$
\ddot{x}=-\omega_{0}^{2} x-\frac{\omega_{0}}{Q} \dot{x}+a \cos .
$$

$$
\Rightarrow-\omega^{2} x=-\omega_{0}^{2} x+\frac{i \omega_{0} w}{Q} x+a_{2 x t}
$$

where $a_{m}=-\frac{\omega_{y}^{2} k_{ \pm}^{0}}{2} L e^{-i \omega_{y} t}$

$$
x=\frac{a_{\text {ext }}}{\omega_{0}^{2}-\omega^{2}-i \frac{\omega_{0} \omega}{Q} \omega}
$$

$$
\Rightarrow x=\frac{\frac{-\omega_{q}^{2} h_{i}^{0}}{2} L}{\omega_{0}^{2}-\omega_{p}^{2}-\frac{i \omega_{0} \omega_{i}}{Q}} \cdot e^{-i \omega_{g} t}
$$

egg. for $w=\omega_{y}=\omega_{0}$;

$$
x=-i \frac{h+L}{2} Q e^{-i \operatorname{uog} t}
$$

\Rightarrow kighmechaniial Q (low mechanical loss) needed!

Is there aformdation that rever uses gauge-dependent quantities?

Sare! Revall Electormaprefinn: Yust worl with $\vec{E} \vec{b} \vec{b}$ inctead of $A \& V$?
\Rightarrow in C. R: Yust worl with the Riemans corvature!
reall: $\Delta v^{i}=-R^{i}$ olo $\Delta x \cdot \Delta t$

$$
\begin{aligned}
\Delta X_{x} & =R^{\prime} 001 \Delta x-\Delta t \\
\Rightarrow a_{x} & =R_{00,}^{\prime} \cdot \Delta x
\end{aligned}
$$

What is $R_{\text {pry }}^{\alpha}$? $\quad R_{001}^{1}=\frac{1}{2}\left[R_{1}^{1} 10,0-R_{10}^{1}, 10\right.$

$$
\begin{aligned}
& -\underbrace{h_{0}^{\prime}, 0,1}_{0}+\underbrace{h_{00}{ }^{\prime}{ }^{\prime},}_{0}] \\
& =\frac{1}{2}\left(-\infty^{2}\right) h_{t} \\
& \Rightarrow \ddot{x}=-\frac{\omega^{2}}{2} h_{f} \cdot \Delta x \\
& \Rightarrow \quad \delta x=\frac{R_{t}}{2} \Delta x=\frac{R_{t}}{2} \cdot L
\end{aligned}
$$

Aside: Thene are other mon-zert terms for an h_{+}wave:

Eome calculations show:

$$
R_{0101}=R_{0113}=R_{0220}=R_{0232}=R_{1313}=R_{2332}=\frac{w^{2}}{2} h_{+}
$$

We generxlly
terme.
laddional compozents are comeded to theabove Via a symaetey, or ore $=0$)
tre exomple thisone

$$
\begin{aligned}
& R_{3 i 3}^{\prime}=\frac{w^{2}}{2} h_{+} \\
& \int_{\text {picic 1-3 sutplane }}^{\text {sen }}
\end{aligned}
$$

pureble transpart 3 -vectar (paselbl to \vec{k})

$$
\begin{aligned}
\vec{k} \uparrow \hat{z} \quad \begin{array}{ll}
\Rightarrow & \text { This in } \\
& \text { of the } \\
& \text { It oscille } \\
\text { pricine } \\
\text { as the ge }
\end{array} \\
\underbrace{}_{\hat{e_{y}}}
\end{aligned}
$$ of the 1-3 subplare!

It ascillafes, flutating between pritine \& requtive curvature as the gravitational wave passes!

Gange choires

- We have the chocice of using any 4-vector field $\xi^{\prime \prime}$
\Rightarrow the menic will Change as $\tilde{h}_{\mu \nu}=h_{\mu \nu}+\xi_{\mu, \nu}+\xi_{\nu, p}$
- Ir Vacave: Wesar the transverse-traceless guage

$$
\begin{array}{ll}
0=h_{\mu \nu}{ }^{\nu} d & { }_{k=h_{l}^{\mu}=0}^{L} \\
0^{0}=h_{\mu \nu} k^{\nu} &
\end{array}
$$

which was also sxachionoun (hov $=0$)
in general (i.e. when matter is present) wh cansst
get all of the drrue simultanoovsly.
ommon chrices ane 8
A) transverse qauye: $\sum_{i=1,3} R^{0 i_{i-}^{k}}=0$

$$
s^{i j}, j=0 \quad \text { whene } s_{i j}=\frac{1}{2}\left(h_{i j}-\frac{1}{3} \delta^{k e} h_{k e} \delta_{i j}\right) e_{c_{1,2}, i,}^{i,}
$$

is the truceless part of
the (3x3) spative parf of $h_{i j}$;
Aralong to Coulomb gouge in. Electromagrelisn! $\vec{\nabla} \cdot \vec{A}=0$
B) Synchroroos grouge: $h_{o v}=0, v \in 0,1,2,3 \Rightarrow-1 r^{2}=-d t^{2}+\left(s_{i j}+h_{i j}\right) d_{x} \dot{d}_{i}$
(That's what we explicitly exforred fur plane woses.)
C) Lovenz or hasmonic gauge

- chaose $e^{t \mu \nu}, N-\frac{1}{2} R^{2} \nu^{\nu}=0$ (also 4 equation) with this the linennied Einstein Eurvatare is

$$
G_{\mu \nu}=-\frac{1}{2} \square\left(h_{\mu \nu}^{\alpha}-\frac{1}{2} n_{\mu \nu} h^{\alpha}\right)
$$

\Rightarrow intraduce the force-reversed sfrain

$$
\begin{aligned}
& \tilde{h}_{\nu \nu}:=h_{\mu \nu}-\frac{1}{2} R_{\mu \nu} h \\
\Rightarrow & \text { loreng gauge: } h_{\nu \nu}^{u_{\nu}}=0 \\
\Rightarrow & a_{\nu \nu}=-\frac{1}{2} \square \tilde{h}_{\nu \nu}^{u}
\end{aligned}
$$

compare to Eleclromognefisen: $A^{N}=0$

$$
\Rightarrow \begin{aligned}
& \square \tilde{R}_{\mu \nu}^{L}=-16 \pi 4 T_{\mu \nu} \\
& \text { (in vacovon: } \square \hat{h}_{\nu} L=0
\end{aligned}
$$

in vacuvon the trunsverse-fracher grage is ofter used: $h^{\text {IT }}$

$$
\Rightarrow \square h_{p \nu}^{T T}=0 \text { vacuom anly! }
$$

hiv is different from hpr
\Rightarrow We will vese lorengy gange for wave generation, hat trassverge-traceless gavge far detection, How do the relate to eachother?

Detecting Gravitational Waves

Problem 1

Linearized Gravity: transverse-traceless and Lorenz gauge

We linerarize gravity by assuming that the metric perturbations are small

$$
\begin{equation*}
g_{\mu v}=\eta_{\mu v}+h_{\mu v} \quad\left|h_{\mu v}\right| \ll 1 . \tag{1}
\end{equation*}
$$

In class we derived the Riemann curvature, Ricci curvature and Ricci scalar up to 1st order:

$$
\begin{align*}
R^{\alpha}{ }_{\mu \beta v} & =\frac{1}{2}\left[h_{\nu}{ }^{\alpha}{ }_{, \mu, \beta}-h_{\beta}{ }^{\alpha}{ }_{, \mu, v}+h_{\beta \mu^{\prime \alpha}{ }_{, v}}-h_{\nu \mu^{\prime}{ }^{\alpha}}{ }_{, \beta}\right] \\
R_{\mu v} & =\frac{1}{2}\left[h_{v}{ }^{\alpha}{ }_{, \mu, \alpha}+h_{\mu}{ }^{\alpha}{ }_{, v, \alpha}-h_{, \mu, v}-\square h_{\mu v}\right] \tag{2}\\
R & =+h^{\mu v}{ }_{, \mu, v}-\square h .
\end{align*}
$$

The Einstein curvature, as always, is given by

$$
\begin{equation*}
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} R . \tag{3}
\end{equation*}
$$

Gauge transform

We have also seen that the Riemann curvature is invariant under gauge transforms

$$
\begin{equation*}
\tilde{h}_{\mu v}=h_{\mu v}+\xi_{\mu, v}+\xi_{v, \mu}, \tag{4}
\end{equation*}
$$

i.e. the Riemann curvature has a direct (measurable) physical meaning. The invariance of the Riemann curvature of course also implies the invariance of the Ricci curvature, Ricci scalar and Einstein curvature.

1 Lorenz gauge or harmonic gauge

The Lorenz gauge is defined by

$$
\begin{equation*}
h^{L}{ }_{\mu}{ }^{v}{ }_{, v}=\frac{1}{2} h^{L}{ }_{\mu \mu} . \tag{5}
\end{equation*}
$$

Show that this results in the Einstein equation

$$
\begin{equation*}
\square\left(h^{L}{ }_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} h^{L}\right)=-16 \pi G T_{\mu \nu} . \tag{6}
\end{equation*}
$$

In vacuum, any solution can be written as superposition of plane waves

$$
\begin{equation*}
h^{L}{ }_{\mu v}=h_{0 \mu \nu}^{L} v^{i k_{\lambda} x^{\lambda}} \tag{7}
\end{equation*}
$$

with $k^{\lambda}=(\omega, \omega \vec{n})$. We can always pick $\vec{n}=\hat{e}_{3}$. Show that for such a plane wave solution the four Lorenz gauge constraints (equation 5) imply

$$
\begin{align*}
h_{03}^{L} & =-\frac{1}{2}\left(h_{00}^{L}+h_{33}^{L}\right) \tag{8}\\
h_{01}^{L} & =-h_{31}^{L} \\
h_{02}^{L} & =-h_{32}^{L} \\
h_{11}^{L} & =-h_{22}^{L} .
\end{align*}
$$

2 Trace-reversed Lorenz gauge

Repeat the previous problem with the trace-reversed strain in Lorenz gauge, $\bar{h}_{\mu v}^{L}$:

$$
\begin{equation*}
\bar{h}_{\mu \nu}^{L}=h^{L}{ }_{\mu v}-\frac{1}{2} \eta_{\mu v} h^{L}, \tag{9}
\end{equation*}
$$

The Lorenz gauge condition and Einstein equation become

$$
\begin{align*}
& \bar{h}^{L \mu v}=0 \tag{10}\\
& \square \bar{h}_{\mu v}^{L}=-16 \pi G T_{\mu v} .
\end{align*}
$$

Again looking at a plain wave in 3-direction in vacuum, show that

$$
\begin{align*}
& \bar{h}_{03}^{L}=-\frac{1}{2}\left(\bar{h}_{00}^{L}+\bar{h}_{33}^{L}\right) \tag{11}\\
& \bar{h}_{01}^{L}=-\bar{h}_{31}^{L} \\
& \bar{h}_{02}^{L}=-\bar{h}_{32}^{L} \\
& \bar{h}_{33}^{L}=+\bar{h}_{00}^{L} .
\end{align*}
$$

3 Transverse-traceless gauge

In vacuum the transverse-traceless gauge is defined by

$$
\begin{array}{ll}
h^{T T T^{\mu v}}=0, & \text { transverse } \\
h^{T T^{\mu}}{ }^{\nu}=0, & \text { traceless } \tag{12}\\
h^{T T}{ }_{0 v}=0, & \text { time components are zero }
\end{array}
$$

Show that the corresponding Einstein equation in vacuum is

$$
\begin{equation*}
\square h^{T T}{ }_{\mu \nu}=0 . \tag{13}
\end{equation*}
$$

The gauge transform from Lorenz to TT gauge is given by

$$
\begin{equation*}
h_{\mu \nu}^{T T}=h_{\mu \nu}^{L}+\xi_{\mu, v}+\xi_{v, \mu} . \tag{14}
\end{equation*}
$$

In vacuum, any solution can again be written as superposition of plane waves

$$
\begin{equation*}
h^{T T}{ }_{\mu \nu}=h_{0}^{T T}{ }_{\mu \nu} v^{i k_{\lambda} x^{\lambda}} \tag{15}
\end{equation*}
$$

with $k^{\lambda}=(\omega, \omega \vec{n})$. Show that for a plane wave solution with frequency ω traveling in $\vec{n}=\hat{e}_{3}$ direction, the vector ξ^{μ} is given by

$$
\begin{equation*}
\xi^{\mu}=\frac{1}{2 i \omega}\left(-h_{00}^{L}, 2 h_{01}^{L}, 2 h_{02}^{L},-h_{33}^{L}\right), \tag{16}
\end{equation*}
$$

which implies

$$
\begin{align*}
& h_{11}^{T T}=h_{11}^{L} \tag{17}\\
& h_{12}^{T T}=h_{12}^{L} \\
& h_{22}^{T T}=h_{22}^{L} \\
& h_{0 v}^{T T}=0, \quad v=(0,1,2,3) \\
& h_{3 v}^{T T}=0, \quad v=(0,1,2,3) .
\end{align*}
$$

4 From Lorenz to transverse-traceless gauge ($h_{\mu \nu}^{L} \rightarrow h_{\mu v}^{T T}$)

Show that for a plane wave solution traveling in an arbitrary direction \vec{n}, this result (equation 17) for the spatial components can be written as

$$
\begin{equation*}
h_{i j}^{T T}=\left(P_{i}^{k} P_{j}^{l}-\frac{1}{2} P_{i j} P^{k l}\right) h_{k l}^{L} \equiv\left[h_{i j}^{L}\right]^{T T}, \tag{18}
\end{equation*}
$$

where the projection operator $P^{i j}$ is given by

$$
\begin{equation*}
P^{i j}=\delta^{i j}-n^{i} n^{j} . \tag{19}
\end{equation*}
$$

5 From trace-reversed Lorenz to transverse-traceless gauge ($\bar{h}_{\mu \nu}^{L} \rightarrow h_{\mu v}^{T T}$)

For plane-wave solutions in arbitrary direction \vec{n}, show that the following also is true

$$
\begin{equation*}
h_{i j}^{T T}=\left(P_{i}{ }^{k} P_{j}{ }^{l}-\frac{1}{2} P_{i j} P^{k l}\right) \bar{h}_{k l}^{L} \equiv\left[\bar{h}_{i j}^{L}\right]^{T T} . \tag{20}
\end{equation*}
$$

Again specializing to $\vec{n}=\hat{e}_{3}$, show that this implies

$$
\begin{align*}
& h_{11}^{T T}=\frac{1}{2}\left(\bar{h}_{11}^{L}-\bar{h}_{22}^{L}\right) \\
& h_{12}^{T T}=\bar{h}_{12}^{L} \\
& h_{22}^{T T}=\frac{1}{2}\left(\bar{h}_{22}^{L}-\bar{h}_{11}^{L}\right) \tag{21}\\
& h_{0 v}^{T T}=0, \quad v=(0,1,2,3) \\
& h_{3 v}^{T T}=0, \quad v=(0,1,2,3),
\end{align*}
$$

which is worth remembering.

PSI
i) of $h_{r}{ }_{v}{ }_{v}=\frac{1}{2} h_{N}$

Lozengy gouge

$$
\begin{aligned}
& R_{\mu v}=\frac{1}{2}\left[h_{\nu}{ }^{2}{ }_{1 N_{\nu}}+h_{\mu}{ }^{\alpha}{ }_{1 \nu, \alpha}-h_{\mu \nu v}-\square h_{\mu \nu}\right] \\
& \underbrace{\frac{1}{2} h_{i}^{L}, \mu, \quad \frac{1}{2} h_{N, N}^{L}}_{0} \\
& =-\frac{1}{2} \square h_{\mu \nu}
\end{aligned}
$$

\Rightarrow bance-reverse operation to ge to Gov:

$$
G_{\nu 0}=-\frac{1}{2} \square\left(h_{\mu \nu}-\frac{1}{2} q_{\nu} h\right)=8 \pi 4 T_{\mu \nu}
$$

6) explicit constants: ip $\leftrightarrow i k^{i}, \quad k_{\mu}=\omega\left(\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right), k^{\mu}=\omega\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right)$

$$
\begin{aligned}
& h=h_{\mu}^{N}=-h_{00}+h_{11}+h_{72}+h_{33} \\
& \begin{array}{l}
\left.0=h_{0 \nu} k^{v}-\frac{1}{2} h k_{0} \quad i\right) h_{00}+h_{03}+\frac{1}{2}(h)=0 \\
0=h_{32} k^{\nu}-\frac{1}{2} h k_{3} \\
\text { ii) } h_{30}+h_{33}-\frac{1}{2}(h)=0
\end{array}\left\{\begin{array}{l}
2 h_{03}=-\left(h_{00}+h_{33}\right)
\end{array}\right. \\
& \text { i) -ii) } i_{00}-h_{33}+\left(-h_{00}+h_{11}+h_{22} h_{33}\right)=0 \quad \Rightarrow h_{11}=-h_{22} \\
& 0={\underset{2}{2} 2 k^{2}-\frac{1}{2} h k_{2}}_{\underbrace{2}_{2}}^{h_{10}+h_{13}=0} 2_{2}=0 \\
& \Rightarrow h_{10}=-h_{13} \\
& h_{20}=-h_{23}
\end{aligned}
$$

2a) Trme-reacrsed! $\Rightarrow-\frac{1}{2} \square \hat{h}_{2}^{2}=8 \pi 4 T_{p \nu}$
b)

$$
\begin{aligned}
& h_{00}+h_{03}=0 \quad \Rightarrow h_{03}=h_{00}=h_{33} \\
& h_{80}+h_{33}=0 \\
& h_{10}+h_{13}=0 \\
& h_{20}+h_{23}=0
\end{aligned}
$$

3) Tranwerse - frace bes in vaccom:

$$
R_{\mu \nu}=\frac{1}{2}\left[h_{\nu}^{\alpha}{ }_{11}^{2}, \alpha+h_{\nu}^{2}, \nu, \alpha-h_{1, \nu}-L h_{\mu \nu}\right]
$$

G'ginen.' (We could get it by enformang the syechrondus condition, as we did before.)

$$
\begin{aligned}
& \xi_{\mu}=\frac{1}{2 i \omega}\left(\begin{array}{c}
h_{00}^{L} \\
2 h_{L_{1}}^{L} \\
2 h_{02} \\
-h_{33}^{L}
\end{array}\right) \Rightarrow \xi_{\mu, v}=\frac{1}{2}\left(\begin{array}{cccc}
-h_{00} & 0 & 0 & h_{00} \\
-2 h_{0_{1}} & 0 & 0 & 2 h_{0_{1}} \\
-2 h_{22} & 0 & 0 & 2 h_{02} \\
+h_{33} & 0 & 0 & -h_{33}
\end{array}\right) \\
& \begin{array}{l}
\Rightarrow \xi_{p_{1} u}+\frac{\xi_{2 / V}}{l_{1 /}}=\left(\begin{array}{cccc}
-h_{00} & -h_{01} & -h_{02} & -h_{03} \\
-h_{01} & 0 & 0 & -h_{31} \\
-h_{02} & 0 & 0 & -h_{32} \\
-h_{03} & -h_{31} & -h_{32} & -h_{33}
\end{array}\right) \\
\begin{array}{lllll}
0 & 0 & 0 & 0
\end{array}
\end{array} \\
& \Rightarrow h_{r v}^{T T}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & h_{11}^{L} & h_{12}^{L} & 0 \\
0 & h_{21}^{L} & h_{22}^{L} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \Rightarrow \quad h_{\mu \nu}^{T T} k^{2}=0 V
\end{aligned}
$$

4)

Note: $h_{p i}^{2} \rightarrow h_{p}^{1 T}$ is a purgetion openslow

$$
\begin{aligned}
& h_{\mu \nu}^{T r}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1 \\
0
\end{array}\right) \cdot\left(h_{\mu 2}^{2}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right) \\
& \text { sualine puat: } \\
& \left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)=\mathbb{H}_{i,}-n_{i}^{k} n_{j} \quad \text { where } n=\left(\begin{array}{l}
0 \\
0 \\
i
\end{array}\right), n \| k \\
& \begin{array}{l}
=0 p_{i j} \quad \& \quad \operatorname{trace}\left(\begin{array}{ll}
1 & \\
0 & 1 \\
0 & \\
& 0
\end{array}\right) \cdot\left(\begin{array}{ll}
h_{11} & x \\
x_{122} & *
\end{array}\right)
\end{array} \\
& \Rightarrow \text { eyation 18! } \\
& =h_{11}+h_{22}=0
\end{aligned}
$$

5) Since the result of the projedin is trace-free, it is also valed for the trace-rewerred gruge: $\left(p_{i}^{*} p_{i}^{l}-\frac{1}{2} p_{i j} p^{k e}\right) \eta_{k e}=0$

$$
\begin{aligned}
& \Rightarrow h_{j i}^{+T}=\left(p_{i}^{\prime \prime} p_{j}^{l}-\frac{1}{2} p_{i j} p^{k e}\right) \hat{k}_{k e}^{L}=:\left[h_{p 2}^{2}\right]^{T T} \\
& \Rightarrow h_{i j}^{T T}=\left(\begin{array}{lll}
\alpha_{11}^{L} & h_{12}^{L} & 0 \\
\hat{h}_{21}^{2} & L_{2}^{2} & 0 \\
0 & 0 & 0
\end{array}\right)-\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
- & 0
\end{array}\right) \cdot\left(h_{11}^{L}+h_{22}^{2 L}\right) \Rightarrow \begin{array}{l}
h_{11}^{T T}=\frac{1}{2}\left(h_{11}^{L L}-h_{22}^{2}\right) \\
h_{22}^{T T}=\frac{1}{2}\left(\hat{h}_{22}^{L}-h_{11}^{L}\right) \\
h_{12}^{T \top}=h_{12}^{L}
\end{array}
\end{aligned}
$$

Generation of Gravitational waves

- We stay with linearized gravity: Guv $=y_{u v}+h{ }_{2 z}$ trace-reverced
- work the 'lorenz grape: $\hat{h}_{\mu \nu}=h_{\mu \nu}-\frac{1}{2} 2_{\mu \nu} h, \quad \tilde{R}_{\mu}^{\nu}, \nu=0$

$$
\Rightarrow \square \tilde{k}_{\mu \nu}=-16 \pi G T_{\mu \nu}
$$

\Rightarrow Simple wove equation for sash component,
'Components dent mix'!
\Rightarrow Standard Green's function upproach works:

$$
\tilde{h}_{\mu \nu}(t, x)=4 \zeta \int d^{3} x^{\prime} \frac{\operatorname{Tp\nu }_{\nu}\left(\underline{x}^{\prime}, t^{\prime}=t-\left|\underline{x}-x^{\prime}\right|\right)}{\left|\underline{x}-\underline{x}^{\prime}\right|}
$$

Radiation in the for field:

- We now make 2 assumptions:
i) $L \ll \lambda$ (Source \ll Wavelength)

$$
\Rightarrow \int T_{1,2}^{\mu t} d^{3} x \rightarrow\left[\int T T_{\mu \nu} d^{3} x\right]^{\text {ret }} \quad 1 \leftarrow \lambda
$$

ii) $\lambda \ll r$ (Wavelength \ll distance)

$$
\begin{aligned}
& \Rightarrow \int \frac{T_{\mu \nu}}{\left|x-x^{\prime}\right|} d^{3} x^{\prime} \rightarrow \frac{1}{r} \int T_{\mu \nu} d^{3} x^{\prime} \\
& \Rightarrow h_{\mu \nu}^{2}(t, \underline{x})=\frac{44}{r}\left[\int T_{\mu \nu} d^{3} x\right]^{\mu t} \equiv \frac{44}{r}\left[\int T_{\mu \nu} d^{3} x\right]_{(t-1,0)}
\end{aligned}
$$

Now: energy conservation: $T_{100}^{00}=-T^{0 j}$,
\& momentuon conservation: $T_{10}^{\text {jo }}=-T^{j k} / k$

$$
\begin{aligned}
& \Rightarrow T_{1,0}^{00}=-T_{1 j, 0}^{0 j}=T_{1 j, k}^{j k} \\
& \Rightarrow T_{0,0}^{00} x^{j} x^{k}=T^{l \ln } \ln _{n} x^{j} x^{k} \\
& =\left(T^{l i m}, e x^{j} x_{1 m}-T^{l m} \delta_{m}^{j} x^{k}-T^{l m}, x^{j} \delta_{m}^{k}\right. \\
& =(\ldots), m-T^{e j} e^{k}-T^{e k}, e^{j} \\
& =(\quad)_{x}-\left(T^{e j} x^{k}\right)_{1}-\left(T^{e k} x^{j}\right), e \\
& +T^{k j}+T^{j k}
\end{aligned}
$$

But $T^{l n}=0$ outside source region
\Rightarrow total derivatives disappear in integration!

$$
\begin{aligned}
& \Rightarrow \int T_{10,0}^{\infty 0} x^{j} x^{k} d^{3} x=2 \int T^{j k} d^{3} x \quad+\underbrace{\text { suofrect term }}_{0} \\
& \Rightarrow \int T^{i^{k}} d^{3} x=\frac{1}{2} \int T_{100}^{\infty} d^{3} x \\
& =\frac{1}{2} \frac{d^{2}}{d t^{2}} \quad I^{j k} \\
& \text { with } T^{i k}=\int_{\substack{7 \\
T^{00}}} x^{j} x^{k} d^{3} x
\end{aligned}
$$

Thus we find: $\quad \tilde{l}_{i j}^{L}=\frac{44}{r}\left[T_{i j} d_{x}^{3}\right]^{\text {ret }}$

$$
\begin{aligned}
& \left.=\frac{24}{\mu}\left[\int T^{00}, 0,0 x^{j} x^{t} d^{3}\right]_{x}\right]^{\text {NAt }} \\
\hat{h i}_{i j}^{L} & =\frac{24}{r} \frac{d^{2}}{d \tau^{2}} I_{i j}^{0 p t}
\end{aligned}
$$

\Rightarrow mo priject to transverse-tracoless gauge:

$$
\left[h_{i j}^{T T}=\frac{2 t}{r} \frac{d^{2}}{d t^{2}}\left[I_{i j}^{e l}\right]^{T T}\right]
$$

see Probleas I

Note: Define mass quedrupole moment as hoce-fee:

$$
\begin{aligned}
& \eta_{i j} g=\int T^{00}\left(x^{i} x^{j}-\frac{1}{3} r^{2} \delta_{i j}\right) d^{3} x \\
& \Rightarrow\left[I_{i j}\right]^{T T}=\left[g_{i j}\right]^{T T} \quad \text { simee }\left(P_{i}^{k} P_{j}^{2}-\frac{1}{2} P_{i j} P^{k e}\right) \delta_{i j}=l
\end{aligned}
$$

Quadropole formala: $\rightarrow h_{i j}^{T T}=\frac{24}{T} \frac{d^{2}}{d t^{2}}\left[\eta_{i j}^{\text {ret }}\right]^{T T}$
Notes: we used $L \ll \lambda \ll H$

- we Lineanized gravity \Rightarrow we neglected self-graily, which

$$
\text { has } T_{\text {self }}^{\mu \nu}=O\left(h^{2}\right)
$$

"Both "mosopole redicition" $\tilde{h}_{0}=\frac{44}{1} / T_{00} d^{3} x$
\& "dipple ndiation" $\tilde{l}_{0 j}^{0}=\frac{44}{1} \frac{d}{d t} \int T_{00} x^{j} d^{3} x$ are pare gaoge modes, thanks to Energy \& Momantum conservalion.
(Compare Elechorathapuetiso: $\quad A^{0} \times \frac{1}{r} \int S d^{3} x$ is quage mode -thantrs to chnogec conseru

