Review:
Towards the Fundamental Quantum
Limit of Linear Measurement of
Classical Signals



Overview

-- H. Miao et al., PRL 119, 050801 (2017).

-- The quantum Cramér-Rao bound (QCRB) sets a strict limit for the
parameter estimation of a quantum system; an interferometer is a
guantum system with parameter x(t).

-- Authors applied QCRB to linear measurements of continuous
classical signal and derived a condition to achieve the bound.

-- Their general discussion was applied to GW detectors and they
found that a test mass can be viewed as a resource for improving
the sensitivity.


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.050801
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1. Introduction

-- Quantum noise in a position measurement (like a GW detector) is
one of the “fundamental” noises.

& £, {SQL: determined by mass,}
-- It had been considered that the S | Xog,,not by power or finesse
standard quantum limit (SQL) is T
fundamental and cannot be beaten. % Shot noise
—- It turned out that quantum non- 2 S e
demolition (QND) measurement - R
enables us to beat the SQL. Frequency

-- The SQL is not the fundamental limit,
then what is the fundamental limit of the quantum noise???

=> Quantum Cramér-Rao bound is fundamental and can’t be beaten.
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2. Crameér-Rao bound

-- In estimation theory and statistics, the Cramér—Rao bound
expresses a lower bound on the variance of estimators of a
deterministic (fixed, though unknown) parameter. (from wikipedia)

0.030 )\

éy to ESTIMATE the parameter(s
of the measured system O

‘ Best achievable estimation error is
limited by Cramér-Rao bound.

- cannot be beaten, fundamental

Probability
"1 distribution p(x|8)

0.015
d)utcome of repeate
pasurements

0.005 A

NOTE:
-- B is a (set of) classical number(s)

} -- classical system —> (original) CRB

0.000 T T T
-100 —I5 —50 —25 0 2‘ 50 75 100

X

[?? unknown parameter 6 -- quantum system = quantum CRB

e ¢« o« (mean pin this example)
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2. Cramér-Rao bound

Classical case

-- Classical measurement is characterized by probability p(x|0):

X: measurement outcome, 0: parameter that characterizes p(x)
9:(91792: T gd)

J: Fisher matrix
«— 1 p(]0) Ip(al9)
Jig = ; p(x|0) 00, 00

0.030

Probability
"1 distribution p(x|8)

~

>~ 0.020
= 5 ﬁl’hen this mequalnty holds:
_’.g Outcome of repeate ]
g oMmeasurements ¢z J (C: covariance matrix of 6)

0,005 or more explicitly (N: # of repeats of measurement)

1
D003100 -75 -50 25 2 50 75 100 (Ag?St)2 Z —(J_l)’i‘i
X ‘ K ¢ N /
Cramér-Rao bound

? ? ? unknown parameter 0
(mean W in this example)




2. Cramér-Rao bound
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Quantum case

-- If measurement basis is fixed, probability p(x|06) is determined.

(Quantum theory predicts probability distribution.) Cra?nér-Rao bound is applied
-- However, measurement basis is arbitrary. £.,: POVM, generalization of
toso . projection operator |33> (:E|
| Probability p($|9) — tr[p9Efﬂ] Py : density operator
R d|5tr|but|0n p(Xle) (System's state)
0.020 / - - ]
Measurement-operator-independent inequality
Oltcome of repeate will be important!! For example...
omeasurements S: quantum Fisher matrix
I s - P Ope 1/, -  ar.
o Sij = gtr[pa(LBiL;j—l—ngLgi)]’ 2 = > (PoLas + Li;p0)
1
t 1 —1
0000 %0 75 b0 35 Then’ (Agfs ) > —(J )'“' . N(S )%

Choice of measurement
operator

Quantum Cramer Rao bound )

\_

NOTE: -- There are an infinite number of quantum

Fisher matrix.

unknownstate __ £or more detail on QCRB, see e.g. & FBIE &

6

= F il ]



2. Cramér-Rao bound
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. Unknown
QCRB and interferometer exerna

perturb.| =
== How is the QCRB related to interferometer? == ,5{
-- Consider displacement measurement. Quantum field
Optical field is quantum, and depends on unknown P
parameter x(t) that we want to estimate. < | |
=>The QCRB can be applied!! |

NOTE: S

$

From here, x is not measurement outcome
but parameter to be estimated. Sorry for
confusing notations...

We can set the limit to the estimation error of x(t)

Quantum noise of the measurement

1 1
-- Next questions: (Az*%)? > N(J_l) > N(S_l)
-- What is the meaning of this inequality???

-- What is S like???
=> Next a few slides




2. Cramér-Rao bound

Meaning of the QCRB  cermar

perturb.|
/the QCRB D) f{
€s ]' — ]' —
(Az t)2 > E(J 1) > E(S 1) QuantL/J\m field
U Pz
where § = ;tr[ﬁm(Lle + L L1)] :_>__'
0p 1. - P

NOTE: the quantum Fisher information S depends on the state 5.
=> This limit depends on, for example:

- injected laser power

- how much the vacuum is squeezed

cf.) The SQL does not depend on the power.



2. Cramér-Rao bound
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Unknown

Single-shot measurement exerna

/the QCRB A
1

1
AeSt2>_ —1 >_
B> ST 2 o

1 R ~ A
where § = §tr[ﬁm (Lle + L:cL;rc)]

(577

0p, 1 (A . Ay
- = La: LT a:)
\ oz 2 \/? T Laf /

perturb.|

{

Quantum field

Pz

<>

= An example to see what S, the quantum Fisher matrix, is like =

-- single-shot measurement: an impulse z/7 — zd(t)is applied,

then try to estimate z

Pz = €

=

A A dp
zF::c/hpAe—zFa:/ﬁ ﬁ — +3Fﬁm —

~

7
" dx h h

=> ﬁint — —ﬁI/T

(t: duration of the impulse)

. 1/ . Y ) )
P:I:F = 5 (PmLm + Llpm), where L:c = —QZF/h

-

2
(Aa:eSt)Q > h The QCRB is inversely proportional to the fluctuation

~

~~

4(F2) of the observable that couples to x.
=> in this example, the (radiation pressure) force

. the QCRB




2. Cramér-Rao bound

classical *
signal

Single-shot measurement

A~

F

input

quantum
detector

~

Z

output

FIG. 1 of the paper

< classical

observer
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pertu

Quantum field
—-> Pz

= Authors’ approach (linear response theory) =

Unknown
external

rb.| x

{

Then, Oy770FF —

% 7ZF Z

Oxxy = Tr[ﬁdet(*%est - x)Z] - GZZ/)L’%F (iest — Z/ZZF)

h2

/- With linear response theory, they derived the conditions to be
satisfied in order for the equality to hold.

unperturbed operators

'\
2= 2004 (/)20 FO = 20 4 yppx

| Hipe = —F'26(t)
Z : measured observable

(e.g. some quadrature of
the output optical field)

(h2/4))(ZF =2 04 > +

\_

the Uncertainty Relation

40'FF

2 2
OZF h QCRB
2 2 4 - O'xx
OFFX7ZF OFF

Correlation oz needs to be zero.

/

10



2. Cramér-Rao bound

Summary up to here

-- The QCRB limits the parameter estimation error.

position measurement case =2 limits the quantum noise level

(Az)2 > = (J1) > ~(§7Y)

N N
-- The QCRB depends on a state of the system, such as laser power

NOT similar to the SQL

-- An example of single-shot measurement shows Unknown
s n? N 0% S h? _ _QCRB external
xx = 4GFF JFF)L/%F = 4GFF XX perturb.

-- The QCRB is inversely proportional to the
fluctuation of the observable that couples to x,

o _ Quantum field
the (radiation pressure) force in the example. A

-- Correlation oz g needs to be zero to achieve
the bound

- Pz

xr
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3. What this paper showed

-- Our interest: continuous measurement of x(t) A, = —Fx(t)
- output optical field is sequentially and continuously measured.
- the number of parameters is infinite; x(t) is continuous.
=> Previous discussion cannot be applied directly.
(Not sequential measurement, finite parameter set)

-- For such linear continuous measurement, the QCRB had been
derived, but the condition for the equality to hold had not.
h2
QCRB B
5

. . . Symmetrized (or one-sided) spectral density
-- This paper derived that condition.

Detector is in a minimum = Backaction
( uncertainty state and Syp(w) =0 to be 0 )

Equality condition is important; this will tell The second condition can
us how we should design a detector. be satisfied if Im[yzp(w)] =0 ,
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3. What this paper showed

Derivation
Hiye = —Fz(t) j
classical F quantum Z < classical force
signal input detector output observer > || ﬁ‘ —_—
FIG. 1 of the paper Z <

1. With a linear-response approach, like

Z(1)=ZO) + / " dtyzr(t—)x(), where xas(t )= A0, BOwne - 1)

and using the simultaneous (sequential) measurability condition,

5 S0 INT ’ i e.8. photo-detection at the output port|
[Z(1), Z(1)] =0 Vi1 i does not disturb the interferometer i

they described the Uncertainty Relation with spectral densities:
Szz(@0)Spr(®) — |SZF(00)|2 This was derived in

h2 ) another paper by the first

> 1 zr(@)]* + R[Sz (@)yrr(@) — Syp(@)xzr(®)]]. ilét:;; 012103 (2017) 13
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3. What this paper showed

Derivation

A~ ~

classical * F quantum Z < classical force
signal input detector output observer > || F —
FIG. 1 of the paper Z <
—
2. Equality condition. If the detector is in a minimum uncertainty state,
SZZ(Q)SFF(O)) - |SZF(w)|2 ZE%') e.g. coherent state,
equi“tyhz RA 95012103 (2017)) Sdueezed vacuum state

> —|yzr(@)|* + h|Im[Szz(a)))(pp(0))/ZSEF(W)ZZF(Q’)]|-

On the other hand, Z(:) = 29 +/°° Aty zr(t = 1)x(t) => Rey() = Z(0) /x2r (o)

Then the Uncertainty Relation turns to be

A2 S,z +A[Im[S —S* h?
Gxx(w)> f +’ ZF’ ’ [zz)(FF ZFZZFH> :ngCRB

_4SFF S'FFD(ZF’2 _4SFF

14
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3. What this paper showed

Derivation

A~ ~

classical * F quantum Z < classical force
signal input detector output observer > || F —
FIG. 1 of the paper Z <
—
2. Equality condition. If the detector is in a minimum uncertainty state,
SZZ(Q)SFF(O)) - |SZF(w)|2 ZE%') e.g. coherent state,
equi“tyhz RA 95012103 (2017)) Sdueezed vacuum state

> —|yzr(@)|* + h|Im[Szz(a)))(pp(0))/ZSEF(W)ZZF(Q’)]|-

On the other hand, Z(:) = 29 +/°° Aty zr(t = 1)x(t) => Rey() = Z(0) /x2r (o)

—00

Then the Uncertainty Relation turns to be .
This shows
= 2 +M2+M]> n _ os =2 the QCRB s achieved if:

Gxx(w)> < X
and SZF(G)):O

- ra 2 —_ C
A4Sk Srrlrzr| 4SFF Detector is in a minimum
uncertainty state
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3. What this paper showed

Derivation
Hin = —Fz(t) j
classical F quantum Z < classical force
signal input detector output observer > || F —
FIG. 1 of the paper Z <
-

3. Can we achieve S,z(w) =0 ?
=> If Imfy;;(w)] = 0, we can find the optimal Z to achieve it.

They showed Im[yzr(w)] =0 <=> Z = Z1sinf + Zycosf, tan € Reals
Homodyne phase is real!!

They also showed what happens if Im[yzz(@)] #0:

At least, /2 times worse
sensitivity can be achieved

{ e QCRBJ _

<mino,, <20

16
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4. Application to GW detectors

-- We can re-write the QCRB as:
h? h?

_ 2
O-xe C T AT |1_)(qq)(.7:.7:|
4SFF 4S_7:]: L
A A Hiy = —Fz(t) = —GF
r . q Z
- > — » XZF —>
perturbation * test mass position l, force
. i I
mech Xaq XFF opt.lcal =2 ] —
suscept. N spring <«
A I Z .
radiation pressure 'Z____-E__Z_@D_‘if__‘f_%gﬂ_-_-g.i q
A FO A o) X2FggF " 5 1 5
(0) — 70) = %0) 94 => Srr Srr
I_qu)(ff I_qu)(}'f |1 - XQQX.F-F|

/ 11— q)(}"f|
This implies: if optomechanical amplification is F\lgh

the QCRB can be very low.

17
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4. Application to GW detectors

Examples
f; A = 0 (tuned) A # 0 (detuned)
= 1019} --- Constant readout || -=-- Optimal readout
g
2
=
2z
L
75
2m
=
2O -

10> 10°
Frequency (Hz) Frequency (Hz)
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4. Application to GW detectors

™
EIO—IQ
8
>
=
=
-
L
wn
23 7
=20 2}
S
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Examples

A = 0 (tuned)

. === Constant readout

A # 0 (detuned)
| -=--Optimal readout

~

optical

1 "-.__  resonapce
/ll_quX.F.F| "‘*.._*
\ - o3 < ming,, < 268°°°
\\\ llr----..___[ed line o
\\ I||I|lr"""la§§“lt|'13ﬂ \a :
S, ___..-'r-...._ﬂxr
10° 103 102 103
Frequency (Hz) Frequency (Hz)

19



5. Discussion
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= Interpretation of the two dips =

Both dips come from positive-feedback-induced opticall\ .

resonance.
=> Radiation pressure Srr is amplified there.

A # 0 (detuned)
-=-= Optimal readout

hZ

h2

- high freq. dip = optical resonance 0u2 o= |l -;{qqxﬁiz
- Low freq. dip =2 ponderomotive squeezing/amplification

3

squeezing, rather than a victim of the quantum backaction.

[Test mass acts as a resource for this amplification, a medium for}

Enhancing the radiation pressure fluctuation somehow

will give us a better sensitivity.

20
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5. Discussion

= Why+/2 times worse? = A # 0 (detuned)
-=-= Optimal readout

Around the high freq. dip, only lower sidebands are
resonating in the cavity.

=> optimal readout will be lower sidebands like
(Z1 —Z5)/v2, but this is impossible with ordinary L1
detection scheme. o

> — — —
T A4Spr  ASgr

|1 _qu)(f.ﬂz

RecaII tl’liSZ Z = Z1sinf + Zycosf, tané € Reals \
Whether Z such that S,(w) = 0 is realized with real homodyne phase \

determines if the QCRB is achieved or not.

—_—— —_——

lower upper

Wo
Why complex homodyne phase forbidden, then???

21



Feb 9 2017, Ando Lab Seminar

5. Discussion

= Effect of loss = A # 0 (detuned)
-=-= Optimal readout

The quantum Cramér-Rao bound does not come from
some trade-off.

=> the limit can ideally be infinitely small

In reality, there are always losses everywhere.

- perfect backaction evasion is impossible
- squeezing (internal/external) degrades

Incorporating the effect of losses will be important

END 2
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a,: phase fluc.

mean amplitude of laser a,: amp. fluc.

A | .
amp. fluc ¢ , shot noise
> disp. fluc. i : GW signal
-> phase fluc. i 3 GW
2
> i —
< x phase measured s/EM4 | radiation pressure

dj ; ; noise
2
S@==E] & + Y

25 )
QRPN shot noise

- Ka,: phase fluc. corresponding to
position fluc. of mirror caused by RP fluc.

. . . signal
quadrature in, . “direction C_SW &
signal 54

" measured (homodyne) .

“‘al }’
A shot noise’@ 7
Ace\ _~\ ¢:homodyne
e 4—) angle

2
Se(@) = “S [(—r + cot¢)* + 1]

cancel 24
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FIG. 4. The top row shows the QCRB (solid curve) for a LIGO-
type GW detector with detuning frequency A = 0 (left) and
A/(2x) = 400 Hz (right), and various sensitivity curves for
comparison: dashed curve, constant phase quadrature readout;
dash-dotted curve, readout quadrature optimized to maximize
sensitivity at each frequency; and dotted curve, the SQL

\/4h/(Mw?). The bottom row shows the ratio to the QCRB
for selected curves. Other relevant parameters are M = 40 kg,
P.,=800kW, L,,=4km, y/(2z)~ 100 Hz, and laser
frequency wy/(27) ~ 3 x 10'* Hz
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