

大型サブミリ波望遠鏡による 重力波源追観測の可能性

Yoichi Tamura (Nagoya University) Ryohei Kawabe, Kotaro Kohno, Tai Oshima and LST WG

> The 17th DECIGO Workshop Nagoya University, 1-2 November 2018

Outline

- Introduction
 - What is the parameter space to go with single dish (SD) telescopes?
 - How a SD telescope complements current facilities (ALMA)
- Large Submillimeter Telescope (LST): Imaging-spectroscopic surveyor
 - Possible science cases
- Submm transients
 - How will a submm SD telescope complement multi-messenger followups of (B-)DECIGO GW sources?
 - Just show the expected sensitivity
- Summary

Frontiers in Submm Cosmology

[OIII]/dust detection at z = 8.312 World redshift record (z = 9.110) with ALMA!

48°09.46° 09.44° 09.42° 09.40° 09.38°09.36°09.48°09.46° 09.44° 09.42° 09.40° 09.38°09 Right Ascension (J2000)

Tamura et al. (2018), submitted

LETTER

the Big Bang

The onset of star formation 250 million years after

Hashimoto, YT et al. (2018) Nature

Takuya Hashimoto^{1,2}*, Nicolas Laporte^{3,4}, Ken Mawatari¹, Richard S. Ellis³, Akio K. Inoue¹, Erik Zackrisson⁵, Guido Roberts-Borsani³, Wei Zheng⁶, Yoichi Tamura⁷, Franz E. Bauer^{8,9,10}, Thomas Fletcher³, Yuichi Harikane^{11,12}, Bunyo Hatsukade¹³, Natsuki H. Hayatsu^{12,14}, Yuichi Matsuda^{2,15}, Hiroshi Matsuo^{2,15}, Takashi Okamoto¹⁶, Masami Ouchi^{11,17}, Roser Pelló⁴, Claes-Erik Rydberg¹⁸, Ikkoh Shimizu¹⁹, Yoshiaki Taniguchi^{20,21}, Hideki Umehata^{13,20,21} & Naoki Yoshida^{12,17}

https://doi.org/10.1038/s41586-018-0117-z

46.5" 46.0" 45.5" 45.0" 44.5" 33.65 s 33.60 s 33.55 s 33.50 s RA (J2000)

Far-Infrared Fine-Structure Lines

- Brightest lines in the FIR: [C II] 158um, [O III] 88um, [O I] 63um
- Probe physical properties of ISM (ionization state, metallicity)
- Reach z = 20. Competitive with JWST/NIRSpec C III]1909A

Redshift Record

#	Redshift	Object	References	Telescope/Line
1	9.110	MACS J1149-JD	Hashimoto, YT+ (2018)*	ALMA/[OIII]
2	8.683	EGSY-2008532660	Zitrin+ (2015)*	Keck/Ly a
3	8.38	A2744_YD4	Laporte+ (2017)	ALMA/[OIII]
4	8.312	MACS0416_Y1	Tamura+ (2018)	ALMA/[OIII]
5	7.664	z7_GSD_3811	Song+ (2016)	Keck/Ly a
6	7.640	MACS1423-z7p64	Hoag+ (2017)	HST/Lyα & ALMA/[CII]
7	7.541	ULAS J1342+0928	Banados+(2017)	Magellan/Ly α
8	7.508	z8-GND-5296	Finkelstein+ (2013)*	Keck/Ly a
9	7.452	GS2_1406	Larson+ (2017)	HST/Lyα
10	7.212	SXDF-NB1006-2	Shibuya+(2012) Inoue, YT+ (2016)*	Subaru+Keck/Lya ALMA/[OIII]

New discovery space?

HerMES Lockman Hole © HerMES / ESA

Large Submm Telescope

- Large aperture (D = 50 m)
- Wide field of view (> 0.5 deg)
- Long-submm/mm frequency band
- Survey-oriented

Deep Spectroscopic High-z Mapper (Endo et al. 2011)

Distant Galaxies and Clusters

Develop new discovery space complementary to ALMA

• Wide-Field Spectroscopic Survey

Galactic Plane Wideband Spectroscopy

3.5 3.40 AS Best Frequency [GHz] 3.5

Astrochemistry

Submm Transients

Time-domain Science

VLBI

Nearby Galaxies

Magellanic Clouds

SKA Design Studies – Virtual Hydrogen Cone

University of Oxford, D. Obreschkow et al., April 2009

Based on the Millennium simulation (Springel et al. 2005) and a semi-analytic galaxy simulation (Croton et al. 2006, De Lucia et al. 2007)

SKA Design Studies - Virtual Hydrogen Cone

CO/[CII] Tomography

CO/[CII]: representative emission lines in mm-FIR. Benefit from negative k-correction of CO ladder and FIR lines. Overcome the confusion problems.

Light cone from the LST 2-deg² Survey

SKA Design Studies - Virtual Hydrogen Cone

CO/[CII] Tomography

EOR Epoch of Reionization

Search for earliest "hidden" galaxies,

first generation galaxies

RSD Redshift Space Distortion

Verify GR by estimating the growth rate of structure, dark energy problem

LSS Cosmic Large-Scale Structure

Investigate the correlation between dark and baryonic matters from clustering analysis, dark matter problem

CSFH Cosmic Star-formation History

Investigate mass/luminosity function of molecular gas as a function of redshift, "hidden" history of baryonic matter

Evolution of Galaxies

Cosmic evolution of galaxies proved through properties of interstellar medium

... and serendipitous discoveries

Line emitters, transient and variables, ...

New discovery space?

Time What is domain astronomy?

Large Submillimeter Telescope

- Many facilities in 2020's for transient/variable searches
 - LSST will detect a million of transients per night.
 - Gravitational wave (GW) telescopes (VIRGO, LIGO, KAGRA) will *detect* GW sources, which require multimessenger follow-up observations.
- Long duration γ-ray bursts (GRBs) trace the SF history
 - collapse of massive stars; E(iso) ~ 10^52–10^54 erg
 - can be observed even at a cosmological distance
 - occur a few times per day
 - Excellent tracer of cosmic star formation history

Redshift record

17

Why GRBs in sub/mm?

(see also Hatsukade, YT+2014, Nature, 510, 247)

← Complementary tracer → of cosmic star formation

"Submm flare" from GRB reverse shocks

- Earliest afterglows from reverse shocks (< 4 hr) peak at ~300
 GHz, and bright (~1 mJy) even at z > 10 (Inoue+2007)
 - similar to dusty star-forming galaxies
 - Bright compared to a typical galaxy at z > 5 (~10 uJy)
- But, short-lived... \rightarrow Deep and wide image in one shot

New singledish

ALMA (submm interferometry)

SMA detection of submm flare

22

Sub/mm GRB studies to date

= 30 GRB afterglow (1-12hr, 300GHz)

arcmin

ഗ

EM followups of GW sources

- The first GW source GW150914 had an error circle of hundreds of sq-degrees.
- The first NS-NS merger GW170817 has been localized.
- During the course of EM followups, a lot of transients were discovered.
 - Potential transients in submm: GRB orphan afterglows?

If a prediction with $1'\Phi$ error circle...

- ALMA/SKA/ngVLA + future large SD telescope (e.g., LST) will detect the interstellar/circumstellar media in absorption.
- Submm/radio facilities will detect the host galaxies, even if the environment is dusty!

Summary

- LST for Extragalactic "CO/[CII] Tomography"
 - will aim to open a new discovery space complementary to what current/planed telescopes, such as ALMA, SPICA, and Subaru/TMT are exploring/will explore.
 - will provide a basic dataset useful for extragalactic/ cosmological studies ("Submm version of SDSS").
- Time-domain science in the sub/mm
 - Wide-field SD telescopes should be powerful for timedomain science
 - Multi-messenger followups of (B-)DECIGO GW EM counterparts