Physics of Short Gamma-Ray Bursts Explored by CTA and DECIGO/B-DECIGO

Hiroyasu Tajima Institute for Space–Earth Environmental Research Nagoya University

17th DECIGO Workshop Nov 1, 2018 Nagoya University

Gamma-Ray Bursts Overview (1)

Discovered in 1967

Dermi

Gamma-ray Space Telescope

- * Cosmological origin
 - * Large apparent energy release: 10⁵²~10⁵⁴
 - * Energetics consistent with origin of UHECR 180
- * Peak in ~MeV gamma rays
 - Band function: smoothly joined two power law
 - Synchrotron radiation of ultra-relativistic electrons in jet?

Fluence, 50-300 keV (ergs cm⁻²)

H. Tajima, 17th DECIGO Workshop, Nagoya, NOV 1, 2018

Gamma-Ray Bursts Overview (1)

* Discovered in 1967

Dermi

Gamma-ray Space Telescope

* Cosmological origin

BATSE Trigger 298

-1 0 1 Seconds Since Trigger (910609 : 2907.1153)

~0.5 s

3.0-10

2.0•10

1.0.10

- * Large apparent energy release: 10⁵²~10⁵⁴
- * Energetics consistent with origin of UHECR 180
- * Peak in ~MeV gamma rays

Ch: (1:4)

Time Res: 0.064 s

- Band function: smoothly joined two power law
- Synchrotron radiation of ultra-relativistic electrons in jet?

1.20.10

1.15•10

ົ_ທີ 1.10•10

1.05•10

1.00-1

9.50•1

- * Bimodal Duration Distribution
 - * Short (< 2s) GRB: progenitor unknown
 - Merger of compact objects (NS or BH)
 - * Long (> 2s) GRB:

Gamma-ray Space Telescope

- Association with supernovae
 Core-collapse supernovae
- Gamma-ray emission mechanism not well understood

Physics of Short Gamma-Ray Bursts Explored by CTA and DECIGO/B-DECI H. Tajima, 17th DECIGO Workshop, Nagoya, NOV 1, 2018

The Neutron Stars Merging Scenario

- * EGRET observations of delayed HE gamma-ray emissions
 - It is not straightforward to explain by conventional electron synchrotron models
 - * Proton acceleration? Origin of UHECR?

Gamma-ray Space Telescope

* Improved performance of Fermi LAT (Large Area Telescope)

GBN

Nal

- * Larger FOV (>2.4 sr): more GRB samples
- * Larger effective area: better statistics
- Less dead time: detailed lightcurve, time-resolved analysis
- * Wider energy coverage: up to > 300 GeV

* Fermi Gamma-ray Burst Monitor

- *** Views entire unocculted sky**
- * Nal: 8 keV 1 MeV

Derm

Gamma-ray pace Telescope

- * BGO: 150 keV 30 MeV
- Fermi GBM-LAT covers >7 decades of energy band (8 keV to > 300 GeV)

Delayed HE Gamma-ray Emission

* Opacity due to $\gamma\gamma \rightarrow e^+e^-$ in the first peak

Dermi

Gamma-ray Space Telescope

* Late arrival of highest energy gamma rays

Gamma-ray Space Telescope

HE (>100 MeV) emission shows different temporal behavior Temporal break in LE emission while no break in HE emission

Gamma-ray Space Telescope

* HE (>100 MeV) emission shows different temporal behavior * Temporal break in LE emission while no break in HE emission

- Extra spectral component inconsistent with Band function
 Both in low- and high-energy regions
- * Lack of information for short GRBs

- Extra spectral component inconsistent with Band function
 Both in low- and high-energy regions
- * Lack of information for short GRBs

Gamma-ray Space Telescope

Soeb Razzaque (Fermi symposium 2018)

LAT and GBM Emissions

* LAT and GBM emissions are not strongly correlated

Indicates different origins

Dermi

Gamma-ray Space Telescope

> Elena Moretti (Fermi symposium 2018) long 10-2 short GBM FLUENCE (10 keV-1 MeV) [erg cm^{-z}] **10**⁻³ 10-4 10-5 10-6 10-7 10-4 10-6 10-7 10-5 LAT FLUENCE_{GBM} (100 MeV-10 GeV) [erg cm⁻²]

Spectral cutoff - GRB 090926A

Physics of Short Gamma-Ray Bursts Explored by CTA and DECושטיש-טבטושט H. Tajima, 17th DECIGO Workshop, Nagoya, NOV 1, 2018

Dermi

Gamma-ray Space Telescope

Spectral cutoff - GRB 090926A

 Narrow spikes correlated in all energy band

Dermi

Gamma-ray Space Telescope

- * Significant spectral break
 - * Shape is not constrained
 - * if cutoff due to γ-γ absorp.
 - 1st direct measurement of bulk Lorentz factor (Γ~200-700)

Lorentz Invariance Violation (LIV)

* Some QG models predict a violation of Lorentz Invariance at HE:

$$c^{2}p_{\gamma}^{2} = E_{\gamma}^{2} \left[1 + \sum_{k=1}^{\infty} s_{k} \left(\frac{E_{\gamma}}{M_{QG,k}c^{2}} \right)^{k} \right] \implies v_{\gamma}^{2} = \frac{\partial E_{\gamma}}{\partial p_{\gamma}} \approx c \left[1 - s_{n} \frac{1 + n}{2} \left(\frac{E_{\gamma}}{M_{QG,k}c^{2}} \right)^{n} \right]$$

QG mass: energy scale where QG effect

Lamma-ray

* Time delay between 2 photons of energies E_h and E_l emitted simultaneously: $\Delta t = \frac{(1+n)}{2H_0} \frac{(E_h^n - E_l^n)}{(M_{\text{OG},n}c^2)^n} \int_0^z \frac{(1+z')^n}{\sqrt{\Omega_m(1+z')^3 + \Omega_\Lambda}} dz'$

geometrical distance assuming ACDM

- GRB is a excellent light source due to long distance (high z) and short duration
 - * Constraint using GRB 080916C: 13.2 GeV photon detected 16.5 sec after trigger

LIV Test with GRB 090510

- * 30 GeV photon from *z* = 0.9 (7.3B years)
- Quantum Gravity models predicting linear LIV are strongly disfavored

Dermi

Gamma-ray Space Telescope

choice for t _{start}	limit on ∆t (ms)	lower limit on MQG,1/M _{planck}
start of any observed emission	< 859	> 1.19
start of main < 1 MeV emission	< 299	> 3.42
start of > 100 MeV emission	< 199	> 5.12
start of > 1 GeV emission	< 99	> 10.0
association with < 1 MeV spike	< 10	102

- CTA is ~10⁴ times more sensitive than Fermi-LAT for short transients (< 100 s)
- However, CTA has very small field of view (~4°) and low duty cycle (~10%)
- * CTA needs to know when and where GRBs will occur

Gamma-ray Space Telescope

Gamma-ray Gamma-ray Dace Telescope

Guns

CTA can detect ~30 times more photons above 30 GeV than Fermi-LAT above 100 MeV (assuming E⁻² spectrum)

Gamma-ray Space Telescope GRB Energy-Time Relation by CTA

- * If a event like GRB 090510 occurs 10 Mpc away from us
 - CTA can study detailed time profile of very high energy emissions
 - *** CTA can detect Lorentz Invariance Violation**

GRB Energy-Time Relation by CTA

- * If a event like GRB 090510 occurs 10 Mpc away from us
 - CTA can study detailed time profile of very high energy emissions
 - *** CTA can detect Lorentz Invariance Violation**

Summary

- Fermi LAT revealed nature of high energy emission from long GRBs
- * Fermi LAT observed only handful of short GRBs
- * CTA has much larger collection area than Fermi LAT and will be able to study GRB emissions in detail
- If DECIGO/B-DECIGO can predict the time and location of short GRBs, CTA can observe them from the beginning at 10% probability (moonless night in La Palma or Chile)
 - * CTA can place very strong constraints on violation of Lorenz invariance

backup slides

GRB Afterglow

Constraints on Bulk Lorentz Factor

- * Large luminosity and short variability time imply large optical depth due to $\gamma\gamma \rightarrow e^+e^-$
 - * Small emission region: $R \sim c\Delta t$
 - * $\tau_{\gamma\gamma}(E) \sim (11/180)\sigma_T N_{>1/E}/4\pi R^2$

Dermi

Gamma-ray Space Telescope

- $\tau_{\gamma\gamma}$ (1 GeV) ~ 7x10¹¹ for fluence=10⁶ erg/cm², z=1, Δt =1 s
- * Relativistic motion ($\Gamma \gg 1$) can reduce optical depth
 - * Lager emission region: $R \sim \Gamma^2 c \Delta t$
 - * Reduced # of target photons: $N_{>1/E} \propto \Gamma^{2\beta+2}$ (note: $\beta \sim -2.2$)
 - Blue shift of energy threshold: $E_{\rm th} \propto \Gamma$
 - Blue shift of spectrum:
 N(E) = (ΓE)^{β+1}
 - Overall reduction of optical depth:
 Γ^{2β-2} ~ Γ^{-6.4}
- * Possible selection bias due to large EISO
- Assume common emission region for all gamma rays

