B-DECIGOのための軌道設計及び 高精度軌道・姿勢シミュレータの開発

○**松下周平**,石渡翔,五十里哲 東京大学 中須賀船瀬研究室

2018/11/01 第17回DECIGO ワークショップ

- ◆東京大学航空宇宙工学専攻 中須賀船瀬研究室
 >超小型衛星の開発を行ってきた。
 >宇宙機システム工学etc...の研究室です。
 >メンバー
 - 助教 五十里 哲(いかり さとし)
 - 軌道上外乱,高精度軌道決定・予測が専門
 - ・2010年から超小型衛星の姿勢制御,画像解析
 - <u>M2</u> 松下 周平(まつした しゅうへい)
 - B-DECIGOのための軌道設計・制御で修論執筆予定
 - 2017年よりEQUULEUS熱系担当
 - •B4 石渡 翔
 - 今年度研究室に配属
 - 卒論でドラッグフリー制御を用いた軌道・姿勢制御に関する研究を行っている

▶2017年度よりDECIGOプロジェクトのシステム設計 に参入 今日の内容

- B-DECIGOのための軌道設計
 ◆軌道設計
 - 相対永年摂動
 - グリッドサーチによる最適化

2. 高精度軌道・姿勢シミュレータ開発
 3. B-DECIGO宇宙機の卒業設計

今日の内容

1. B-DECIGOのための軌道設計

◆軌道設計

- 相対永年摂動
- グリッドサーチによる最適化

2. 高精度軌道・姿勢シミュレータ開発
 3. B-DECIGO宇宙機の卒業設計

B-DECIGOのための軌道設計

- ◆修士2年松下の研究に関する進捗
- ◆3機の宇宙機が地球周回軌道において各基線長±5%の 距離変動を維持するための最適軌道・軌道制御則を決 定したい.
- ◆現在の進捗

▶3機の非線形レコード盤軌道において、永年摂動による距離変動が最小となる初期軌道条件を求めた
 ▶「永年摂動のみを考慮した距離変動」で表現されるコスト関数が、「連続観測可能時間(±5%を逸脱するまでの時間)」をうまく表現しきれていないことが分かり、新たなコスト関数の定義及び外乱の考慮が必要となっている.(つまり未だうまくいっていない)

今日の内容

1. B-DECIGOのための軌道設計

◆軌道設計

- 相対永年摂動
- グリッドサーチによる最適化

2. 高精度軌道・姿勢シミュレータ開発
 3. B-DECIGO宇宙機の卒業設計

B-DECIGOのための軌道設計への要求

<u>要求</u>

▶地球周回軌道において宇宙機間距離を常に±0.5%以 内の変動に維持し定常観測を行う

- >ノイズ低減のために100uN級スラスタのみ使用可能 ~10⁻⁷m/s²(宇宙機重量 1000 kg) << ~10⁻⁵m/s²(J2, 太陽・月重力)
 - このスラスタのみでは絶対軌道を常に維持することは できない

軌道設計の方針

◆絶対軌道の変動は許容し相対位置の変動のみを制御し、 連続観測可能時間(±0.5%の変動を維持する時間)を引 き延ばす

→**相対位置変動に寄与する外乱**をフィードフォワード的 に打ち消す軌道制御が必要

1. B-DECIGOのための軌道設計

◆軌道設計

- 相対永年摂動
- グリッドサーチによる最適化

2. 高精度軌道・姿勢シミュレータ開発
 3. B-DECIGO宇宙機の卒業設計

相対永年摂動

相対位置の変動のみ

±0.5%の変動可能幅に周期摂動が収まるのであれば、ド リフト的に加わる永年摂動のみを考慮すればよい.

各宇宙機の軌道要素
$$e_n = \{a_n, e_n, i_n, \Omega_n, \omega_n, \sigma_n\}$$
 $n = 1,2,3$
参照軌道の軌道要素 $e_{ref} = \{a_{ref}, 0, i_{ref}, \Omega_{ref}, 0, 0\}$
宇宙機間距離 $r_{sc} = \frac{100}{\sqrt{3}}$ km
 $e_n = f_n(e_{ref})$
@~GEO, $e_n \sim 10^{-4} \ll 1$, $e_n = \frac{\sqrt{\left(a_{ref} + \frac{1}{2}r_{sc}\right)^2 + \left(\frac{\sqrt{3}}{2}r_{sc}\right)^2}}{a_{ref}} - 1$
 $\hat{e}_n = \{a_n, i_n, \Omega_n, h_n, k_n, \phi_n\}$
 $h = e \sin \omega, k = e \cos \omega, \phi = \sigma + \omega$ $i_n = \arccos \frac{|\gamma(n)|}{\sqrt{\alpha(n)^2 + \beta(n)^2 + \gamma(n)^2}}$
 $\Omega_n = \arctan \frac{\alpha(n)}{\beta(n)} + \Omega_{ref}$
 $\omega_n = \arctan \frac{\alpha(n)}{\beta(n)} + \Omega_{ref}$
 $\omega_n = \arccos \frac{\omega_n \cdot \Omega_n}{|\omega_n||\Omega_n|}$
 $\sigma_n = \frac{2n\pi}{3}$

永年摂動関数

J2,太陽,月重力外乱の永年摂動関数

$$\begin{split} \hline \textbf{B} \\ \textbf{B} \\ \textbf{B} \\ \textbf{C} \\ \textbf{$$

ラグランジュの惑星方程式

外乱により変動する軌道要素のnon-singular運動方程式

R: 永年摂動関数

$$\begin{split} \frac{da}{dt} &= \frac{2}{na} \frac{\partial \bar{R}}{\partial \phi} \\ \frac{di}{dt} &= \frac{\cos i}{na^2 \eta \sin i} \left(k \frac{\partial \bar{R}}{\partial h} - h \frac{\partial \bar{R}}{\partial k} \right) - \frac{1}{na^2 \eta \sin i} \frac{\partial \bar{R}}{\partial \Omega} \\ \frac{d\Omega}{dt} &= \frac{1}{na^2 \eta \sin i} \frac{\partial \bar{R}}{\partial i} \\ \frac{dh}{dt} &= -\frac{k \cos i}{na^2 \eta \sin i} \frac{\partial \bar{R}}{\partial i} + \frac{\eta}{na^2} \frac{\partial \bar{R}}{\partial k} + \frac{h\eta}{na^2(1+\eta)} \frac{\partial \bar{R}}{\partial \phi} \\ \frac{dk}{dt} &= -\frac{h \cos i}{na^2 \eta \sin i} \frac{\partial \bar{R}}{\partial i} - \frac{\eta}{na^2} \frac{\partial \bar{R}}{\partial h} + \frac{k\eta}{na^2(1+\eta)} \frac{\partial \bar{R}}{\partial \phi} \\ \frac{d\phi}{dt} &= -\frac{2}{na} \left(\frac{\partial \bar{R}}{\partial a} \right) - \frac{\cos i}{na^2 \eta \sin i} \frac{\partial \bar{R}}{\partial i} + \frac{\eta}{na^2(1+\eta)} \left(h \frac{\partial \bar{R}}{\partial h} + k \frac{\partial \bar{R}}{\partial k} \right) \end{split}$$

J2・太陽・月重力外乱の永年摂動により 変動する軌道要素の運動方程式

$$\frac{da}{dt} = 0, \frac{dk}{dt} = 0, \frac{dh}{dt} = 0$$

$$\frac{di}{dt} = 2n(B\cos i \sin \Omega + C\sin i \sin 2\Omega)$$

$$\frac{d\Omega}{dt} = -n\{6A\cos i - 2B(\cot i \cos i - \sin i)\cos \Omega - 2C\cos i \cos 2\Omega\}$$

$$\frac{d\phi}{dt} = 2n\{3(A - A')\cos^2 i + A' - 2B(\cot i \cos^2 i + 3\sin i \cos i)\cos \Omega - C(\sin^2 i + 1)\cos 2\Omega\}$$

$$A = \frac{1}{16}(3\cos^2 i_s - 1)\xi + \frac{1}{4}\left(\frac{r_e}{a}\right)^2 J_2$$

$$B = \frac{3}{16}\xi\sin^2 i_s$$

$$C = \frac{3}{16}\xi\sin^2 i_s$$

$$\xi = \frac{m_m}{m_e + m_m}\left(\frac{n_m}{n}\right)^2 + \left(\frac{n_s}{n}\right)^2$$

$$A' = \frac{1}{8}(3\cos^2 i_s - 1)\xi - \frac{3}{4}\left(\frac{r_e}{a}\right)^2 J_2$$
軌道要素の絶対値に加わる永年摂動項

コスト関数の設定

最適化問題

J2項・太陽・月重力外乱を受けて変動する宇宙機間 距離の**永年摂動**が最小となるような参照軌道

$$\hat{\boldsymbol{e}}_{\boldsymbol{n}} = \hat{\boldsymbol{f}}_{\boldsymbol{n}} (\hat{\boldsymbol{e}}_{ref})$$

$$\frac{dL_{ij}}{dt} = \frac{1}{|\boldsymbol{x}(\hat{\boldsymbol{e}}_{i}) - \boldsymbol{x}(\hat{\boldsymbol{e}}_{j})|} (\boldsymbol{x}(\hat{\boldsymbol{e}}_{i}) - \boldsymbol{x}(\hat{\boldsymbol{e}}_{j})) \cdot (\boldsymbol{x}'(\hat{\boldsymbol{e}}_{i}, \boldsymbol{A}(\hat{\boldsymbol{e}}_{i})) - \boldsymbol{x}'(\hat{\boldsymbol{e}}_{j}, \boldsymbol{A}(\hat{\boldsymbol{e}}_{j})))$$

$$J = \sum_{i=0}^{2} \sum_{j=0}^{i} \left| \frac{dL_{ij}}{dt} \right|$$

$$\hat{\boldsymbol{e}}_{ref} = \{a_{ref}, 0, i_{ref}, \Omega_{ref}, 0, 0\}$$

$$\hat{\boldsymbol{e}}_{ref} = \operatorname{argmin} J$$

今日の内容

1. B-DECIGOのための軌道設計

◆軌道設計

- 相対永年摂動
- グリッドサーチによる最適化

2. 高精度軌道・姿勢シミュレータ開発
 3. B-DECIGO宇宙機の卒業設計

グリッドサーチ解探索 *a_{ref}* = 42164km (@GSO)

2
$$i_{ref} = 153.3[deg], \Omega_{ref} = 155.6[deg]$$

 $J = 3.46 \times 10^{-7}$

3
$$i_{ref} = 18[deg], \Omega_{ref} = 100[deg]$$

 $J = 2.76 \times 10^{-6}$

コスト関数Jの値は②が小さいが,摂動は大きくなっている. <u>→**このコスト関数が十分に連続観測時間を表現しているとは言え** <u>ない.</u></u>

◆<u>いくつかの近似</u>を行いながら、参照軌道の軌道要素 $e_{ref} = \{a_{ref}, 0, i_{ref}, \Omega_{ref}, 0, 0\}$ を最適設計する手法の提 案を行った. $\begin{cases} e_n, e_s, e_m \simeq 0 \\ i_s \simeq i_m \end{cases}$

◆相対永年変動を考慮することによりGSO高度における *i_{ref}*, Ω_{ref}の最適値を求めるグリッドサーチを行い,連続観測時間が8日となる軌道条件を解析的に探索できた.

◆一方でコスト関数と連続観測時間との関係が十分適切 であるとは言えず,新たなコスト関数を検討する必要 がある.

▶永年摂動のみではなく,長周期摂動や周期摂動も考慮する?

今日の内容

- B-DECIGOのための軌道設計
 ◆軌道設計
 ・相対永年摂動
 - グリッドサーチによる最適化

2. 高精度軌道・姿勢シミュレータ開発

3. B-DECIGO宇宙機の卒業設計

- ◆五十里・松下主導でDECIGOのような高精度編隊飛行 ミッションに使用するための軌道・姿勢シミュレータ を開発中.
- ◆最終的には、干渉計シミュレータと統合し、包括的な ミッション成立性を示すためのプラットフォームとし たい.

制御系概要

*もちろん、完全には分けることはできず、I/Fの重なり・調整が必要

シミュレータ概要

*もちろん、完全には分けることはできず、I/Fの重なり・調整が必要

シミュレータ設計

シミュレータ全体の設計を行うため,必要機能の列挙やクラス定義の整理 等ソフトウェア設計作業を行っている

大項目	中項目h	小項目	詳細	入力	出力	パラメータ	実装者
ダイナミクス	共通	ルンゲクッタ	とりあえず4次 きちんと精度検証したい	状態量 外乱 刻み時間	更新された状態量		
		その他積分器	未定	状態量 外乱 刻み時間	更新された状態量		
	軌道	軌道運動方程 式	並進運動方程式 重力0次項も外乱で入れ込む	状態量:位置,速度 外乱加速度	状態量の変分		
	姿勢	姿勢運動方程 式	回転運動方程式	状態量:Quaternion,角速度 外乱角加速度	状態量の変分		
環境計算	天体位置	SPICE読込	NASAの天体情報DBの読み込み関 連				
		太陽	DBが読み込めれば、あとは簡単 ただし、更新頻度は要検討	時間	地球中心月太陽ベクトル		
		月	DBが読み込めれば、あとは簡単 ただし、更新頻度は要検討	時間	地球中心月位置ベクトル		
		その他					
	蝕	地球蝕判定	本影と半影合わせて求める 地球の直径も場所によって違うけ ど、そこの正確さは必要か?	地球中心太陽位置ベクトル 地球中心宇宙機位置ベクトル	日向なら1.本影なら0. 半影なら相当する太陽エネルギー減衰係数	地球直径 太陽直径	
		月食判定	やる必要あるのか? ->一度オーダー計算してみる	地球中心太陽位置ベクトル 地球中心宇宙機位置ベクトル 地球中心月位置ベクトル	日向なら1,本影なら0, 半影なら相当する太陽エネルギー減衰係数	地球直径 太陽直径 月直径	
	磁場	IGRF	何次まで必要か、オーダー計算し てみる	地球中心宇宙機位置ベクトル	TBD座標地球磁場ベクトル	IGRFパラメータ	
		惑星間地場	必要かオーダー計算してみる	慣性座標宇宙機位置ベクトル	TBD座標惑星間磁場ベクトル	?	
	空気密度		単純なモデルでよいと思うが,一 応オーダー計算してみる	地球中心宇宙機位置ベクトル 蝕情報 UTC時間	空気密度	空気密度計算パラメータ	
	太陽光強度		変化を模擬する必要があるか一応 オーダー計算してみる *距離での変動はSRP計算部で模 擬する	UTC時間	太陽光強度 W/m2	?	
外乱計算	地球重力	加速度	何次まで必要か、オーダー計算し てみる	地球中心宇宙機位置ベクトル	地球中心座標重力加速度ベクトル	地球ポテンシャルパラメータ	
		各加速度(GG)	GGも重力高次項を考えるのか? ->一度オーダー計算してみる	宇宙機慣性テンソル 宇宙機姿勢	機体固定GGトルク	上の計算の後にやるという前提で、重力加速度	
	第三天体重力	太陽		地球中心宇宙機位置ベクトル 地球中心太陽位置ベクトル	地球中心座標重力加速度ベクトル	太陽重力定数	
	surface force		表面外乱 (SRP, TRP, 空力)				

必要機能列挙 (一部抜粋)

シミュレータ設計

シミュレータ全体の設計を行うため,必要機能の列挙やクラス定義の整理 等ソフトウェア設計作業を行っている

クラス名	メンバ変数名	メンバ関数名	機能	次元	補足
spacecraft	orbit				
	attitude				
	disturbance				
	component				
	algorithm				
	cg		重心位置ベクトルm @機体固定	3	そもそもどこを中心と考えるか 軌道伝搬上の"位置"は重心のことである これを基準に考えるなら、この値は0にしてしまってもよいかも ただ、重心は変動するものでもあるので、難しい
	time				
orbit	position		三次元位置 m@ECEF	3	座標系の正式な定義は後程
	velocity		三次元速度 m/s@ECEF	3	座標系の正式な定義は後程
	mass		質量 kg	1	spacecraft直下に置くか迷う
	f		力 N@機体固定	3	
		propagate	軌道伝搬実効関数		

クラス設計(一部抜粋)

シミュレータ実装

これまで松下が作っていた軌道シミュレータ(matlab)をメースに姿勢シ ミュレータを加えたり各種詳細化を行っている(途中).

📝 エディター	- D:¥ikari¥1_research¥2_Formation Flying¥2_DECIGO¥sim¥FF_simulation_main.m	т×				
FF_sim	ulation_main.m 🗙 set_parameters.m 🗙 set_initial_condition.m 🛪 plot_distance.m 🗙 🕂					
🖲 このファイ	ルはライブスクリプトとして聞くことができます。詳細は、 <u>ライブスクリプトの作成</u> を参照してください。	>	<			
1 2 3 4 5 - 6	*////////////////////////////////////	^				
7	%% Calculation setting					
8 - 9	set_parameters;					
10	%% Initilal Condition	-				
11 -	set_initial_condition;					
13	%% propagation					
14 -	x_f = zeros((sc_num+1)*6,DIV_dis);					
15 -	<pre>q_f = zeros((sc_num+1)*8,DIV_att);</pre>					
16 -	dis_sc_c = zeros(3,DIV_dis);					
17 -	x_f(:,1) = xini;					
18 -	dis_sc_c(1,1) = sqrt((x_f(1,1)-x_f(7,1))^2+(x_f(2,1)-x_f(8,1))^2+(x_f(3,1)-x_f(9,1))^2);					
19 -	dis_sc_c(2,1) = sqrt((x_f(13,1)-x_f(7,1))^2+(x_f(14,1)-x_f(8,1))^2+(x_f(15,1)-x_f(9,1))^2);					
20 -	dis_sc_c(3,1) = sqrt((x_f(1,1)-x_f(13,1))^2+(x_f(2,1)-x_f(14,1))^2+(x_f(3,1)-x_f(15,1))^2);					
21						
22	% Runge Kutta 4					
23 -	for i = 1:DIV_dis-1					
24						
25 —	k1 = EOM_orbit(x_f(:,i),i*step_dis,u_sc_temp,Theta_O,nsun_eci,nmoon_eci,sc_num);					
26 -	k2 = EOM_orbit(x_f(:,i)+step_dis/2*k1,(i+1/2)*step_dis,u_sc_temp,Theta_D,nsun_eci,nmoon_eci,sc_num);					
27 -	k3 = EOM_orbit(x_f(:,i)+step_dis/2*k2,(i+1/2)≭step_dis,u_sc_temp,Theta_D,nsun_eci,nmoon_eci,sc_num);					
28 -	k4 = EOM_orbit(x_f(:,i)+step_dis*k3,(i+1)*step_dis,u_sc_temp,Theta_O,nsun_eci,nmoon_eci,sc_num);					
29						
30 -	x_t(:,i+1) = x_t(:,i) + step_dis/b*(k1+2*k2+2*k3+k4);					
31						
32 -	$a_{1S} = s_{0} = (1, i+1) = s_{0} = c_{1}((x_{-}(i, i+1) - x_{-}(i, i+1)) + (x_{-}(x_{-}(i, i+1) - x_{-}(x_{0}, i+1)) + 2(x_{-}(3, i+1) - x_{-}(3, i+1)) + 2(x_{-}(3, i+1)) + 2(x_{-}($					
33 -	$u_{1S} = SU_{1}(z_{1}, \tau_{1}) = Su_{1}(z_{1}, \tau_{1}, \tau_{1}, \tau_{1}) + T_{1}(z_{1}, \tau_{1}, \tau_$					
34 -	uis_sc_c(3,1+1) = sqrt((x_1((,1+1)+X_T((3,1+1)) 2+(X_T(2,1+1)+X_T((4,1+1)) 2+(X_T(3,1+1)+X_T((3,1+1)) 2);					
37 X% Control Volume, Distance of Spacecraft						

今日の内容

- B-DECIGOのための軌道設計
 ◆軌道設計
 ・相対永年摂動

 - グリッドサーチによる最適化

- 2. 高精度軌道・姿勢シミュレータ開発
- 3. B-DECIGO宇宙機の卒業設計

B-DECIGO 卒業設計

▶航空宇宙学科B4が2人1組で衛星システムの設計を行う

- •電力,熱,通信,質量,構造,機器配置,ロケットIFなど衛 星設計に関することは一通り検討する
- •ただし、その検討内容は簡易な初期検討
- ▶体制
 - 当時B4だった、伊藤遼・鈴木隆洸がB-DECIGOをテーマに 選んだ
 - 松下は、B-DECIGO設計をサポート
 - •五十里をはじめ、その他航空宇宙学科の教員が指導

B-DECIGO設計結果概要

B-DECIGO設計結果概要

要素	値	備考
全体構成	基線長100km, 3台でのFF	
鏡	直径30cm, 30kg	
レーザー	波長515nm, 出力1W	
ミッション期間	5年	連続観測期間は数日程度
軌道	対地同期レコード盤軌道	高度約36000km
質量	1台当たり450kg	
データ量	1台当たり1.2Mbps	24bit*500ch*100Hz
通信	最大1.2Mbps	臼田局
データ保存可能量	100Gbits	1.2Mbps 34日分
最大消費電力	520W	予備ヒーター100W込
発生電力	530W	全てボディマウント
推進系	N2Cold Gas (1N, 100uN)	精密制御のためFEEPも搭載

◆通信地上局 →発生データを全てDLするには、臼田局程度の地上局 が複数台必要になる

- ◆制御系の詳細検討
 ▶卒業設計では制御系については十分議論できていない
 - ▶これについては、松下・石渡が修博論・卒論で取り 組む
- ◆ロケット ▶現在の設計では,1台を1基のロケットで打ち上げる ことになっている.3台を一度に打ち上げれるように, フェアリングやロケットIFの設計を深める必要があ る
- ◆シャッター
 ▶レーザー入出力部に太陽光が入らないように,
 シャッターを設ける必要がある