Global COE Symposium 'Symmetry Breaking and Quantum Phenomena' Feb. 15-17, 2010, Kyoto University

Special Research Unit for Gravity and Gravitational-wave Physics Global COE Program, Graduate School of Science, Kyoto University

Short-range gravity experiment Masaki Ando Direct probe for Nature of Space-Time ~ (ando@scphys.Kyoto-u.ac.jp)

ISL of Gravity

Gravity: First force acknowledged in Physics

Falling body Galileo (1564–1642) Law of Motion Newton (1687) General Relativity Einstein (1916) Newton's Gravity $F(r) = G \; \frac{m_1 m_2}{r^2}$

Experimental tests

- Gravitational Inverse square Law Assume $\propto 1/r^{2+\delta}$
 - Upper limit of $|\delta| < 10^{-9}$

c.f. Coulomb's law $|\delta| < 10^{-16}$

Assume Yukawa potential correction

'Inverse-Square Law of Gravity' Fundamental law in physics Should be tested with best accuracy we have.

Gravity in modern physics

Gauge Hierarchy Problem

Gravity is too weak to explain (by 16 orders)

Large extra dimensions ?

N. Arkani-Hamed, et al., Phys. Lett. B 429 (1998) 263

Gravitational force works even in extra dimensions

Cosmological-Constant Problem

> Density of dark energy is too small (by 60 orders)

Fat graviton ?

R.Sundrum, Phys. Rev. D 69 (2004) 044014

Graviton has finite size

According to these theories ... Violation of ISL in short range

10⁻³ 10¹⁵ 10¹² 10^{-9} 10³ 10^{0} λ [m]

Experiment at Kyoto University

Sensor

Target

<u>평</u> 10²

10⁰

Test gravitational ISL at short range Prospects on theories of space-time and extra-dimensions 10⁸ Sta Phase I : 1 mm 10⁶ Phase II : <0.1mm 104 2 extra

Laser interferometer for measurement of test mass rotation $\sim 10^4$ sensitive than optical lever

Suspension

Magnetic levitation with superconductor Small frictional and restoring force \rightarrow Low thermal noise

Laser bench

Interferometer

Test mass and

source mass

Cryocooler

Test-mass

suspension

dimensions

scenario

Principle **Based on Cavendish**type force measurement **Original ideas for** better accuracy 1111111.0411111

Cavendish experiment (1798)

Test mass and source mass

Cylinder and Bar Null measurement by suppressing Newtonian force Gold-coated Tungsten 2 2 High density and good electromagnetic property

Measurement and Data processing

Lock-in measurement Search coherent signals \rightarrow Reject background and spurious noises Compare the results with models estimated by numerical integration