Satellite Design of DECIGO Pathfinder

Original Picture : Sora

Masaki Ando (Department of Physics, Kyoto University)

On behalf of DECIGO working group

Earth Image: ESA

1. DECIGO Pathfinder

Overview, Design

2. Science

GW, Gravity of the Earth 3. Status R&Ds, Mission selection 4. Summary

↓ 1. DECIGO Pathfinder **Overview**, **Design** 2. Science GW, Gravity of the Earth 3. Status **R&Ds**, Mission selection 4. Summary

Roadmap

DECIGO-PF

DECIGO Pathfinder (DPF) First milestone mission for DECIGO Shrink arm cavity DECIGO 1000km → DPF 30cm

Single satellite (Payload ~ 1m³, 350kg) Low-earth orbit (Altitude 500km, sun synchronous)

30cm FP cavity with 2 test masses Stabilized laser source Drag-free control

Targets of DPF

Scientific observations Gravitational Waves form BH mergers → BH formation mechanism Gravity of the Earth → Geophysics, Earth environment

Science technology Space demonstration for DECIGO -> Most tech. with single satellite (IFO, Laser, Drag-free) Precision measurement in orbit -> IFO measurement under stable zero-gravity

Earth Image: ESA

DPF satellite

DPF Payload

Size : 950mm cube Weight : 150kg Power : 130W Data Rate: 800kbps Mission thruster x12

Power Supply SpW Comm.

Satellite Bus

('Standard bus' system) Size :

950x950x1100mm Weight : 200kg SAP : 960W Battery: 50AH Downlink : 2Mpbs DR: 1GByte 3N Thrusters x 4

DPF mission payload

Mission weight : ~150kg Mission space : ~95 x 95 x 90 cm Drag-free control Local sensor signal → Feedback to thrusters

Laser source Yb:YAG laser (1030nm) Power : 25mW Freq. stab. by Iodine abs. line Fabry-Perot interferometer Finesse : 100 Length : 30cm Test mass : ~a few kg Signal extraction by PDH

DPF Sensitivity

Laser source : 1030nm, 25mW IFO length : 30cm Finesse : 100, Mirror mass : 1kg Q-factor : 10⁵, Substrate: TBD Temperature : 293K

Satellite mass : 350kg, Area: 2m² Altitude: 500km Thruster noise: 0.1µN/Hz^{1/2}

(Preliminary parameters)

⁸th LISA symposium (July 1, 2010, SLAC, Stanford)

Requirements

Sensor Noise Disp. noise 6 x 10⁻¹⁶ m/Hz^{1/2} (0.1 Hz) \downarrow x 200 of DECIGO in disp. noise **Other noises** Laser freq. noise: 0.5 Hz/Hz^{1/2} (1Hz) **Acceleration Noise** Force noise $1 \times 10^{-15} \text{ m/s}^2/\text{Hz}^{1/2}$ (0.1 Hz) x 250 of DECIGO **Satellite motion** Disp. noise 1x10⁻⁹ m/Hz^{1/2} (0.1 Hz) External force sources: Residual gas damping, Fluctuation of magnetic field, electric field, gravitational field, temperature, pressure, etc.

1. DECIGO Pathfinder

Overview, Design 2. Science by DPF GW, Gravity of the Earth 3. Status **R&Ds, Mission selection** 4. Summary

Scientific observation by DPF

Astrophysical observation Gravitational Waves form BH mergers → BH formation mechanism

Geophysical observation

Gravity of the Earth → Geophysics, Earth environment

Earth Image: ESA

DPF sensitivity

GW target of DPF

Blackholes events in our galaxy

IMBH inspiral and merger $h \sim 10^{-15}$, $f \sim 4$ Hz

Distance 10kpc, $m = 10^3 M_{sun}$ Obs. Duration (~1000sec)

BH QNM

 $h \sim 10^{-15}$, $f \sim 0.3$ Hz Distance 1Mpc, $m = 10^5 M_{sun}$

Observable range covers our Galaxy (SNR~5)

Earth's Gravity Observation

Measure gravity field of the Earth from Satellite Orbits, and gravity-gradiometer comprehensive and homogeneous-quality data

Seasonal change of the gravitational potential observed by GRACE

Determine global gravity field
→ Basis of the shape of the Earth (Geoid)
Monitor of change in time
→ Result of Earth's dynamics Ground water motion
Strains in crusts by earthquakes and volcanoes

Satellite Gravity missions

3-types of satellite gravity missions

Satellite-to Satellite tracking High-Low •Observe satellite orbit by global positioning system (GPS,...)

•Cancel drag-effects by accelerometer

Courtesv

CHAMP (GFZ, 2000-)

Satellite-to Satellite tracking Low-Low

Distance meas. by along-track satellites
Cancel drag-effects by accelerometer

GRACE (NASA, 2002-)

Satellite Gravity Gradiometry •Observe potential by gravity gradiometer •Drag-free control for cancellation of drags

GOCE and DPF

Satellite Gravity Gradiometry

GOCE

(ESA, 2009-)

DPF (JAXA, 2015-)

Earth observation by gravity gradiometer Drag-free control of satellite

Altitude295km, 3-axis GGSens.5x10⁻¹² m/s²/Hz^{1/2}Baseline0.5mWeight1,200 kg

Altitude500km, 1-axis GGSens.1x10⁻¹⁵ m/s²/Hz^{1/2}Baseline0.3mWeight350 kg

DECIGOワークショップ (2010年6月14日, 東京大学, 東京)

Earth Gravity model

-66m -44m -22m 0m 22m 44m 66m 88m

oid eigen-cg01c - Ellipsoid l = 2 - 360 grid = 2.0° 10000 light = (11°, 23°)

Describe gravity potential by Spherical harmonic functions

 $U(r, \lambda, \phi)$ $= \frac{GM}{r} \sum_{l=0}^{\infty} \sum_{m=0}^{n} \left(\frac{R}{r}\right)^{l} P_{lm}(\sin \phi)$ $\times [C_{lm} \cos(m\lambda) + S_{lm} \sin(m\lambda)]$

 $\overline{G}, \ \overline{M}, \ R$: Grav. Const., Mass and radius of the Earth

 r, λ, ϕ : Orbital radius, longitude, altitude P_{lm} : Associated Legendre functions Coefficients C_{lm} , S_{lm} : Describe the mass distribution Determined by satellite missions, etc.

International Centre for Global Earth Models (ICGEM) http://icgem.gfzpotsdam.de/ICGEM/ICGEM.html

*8 wolfk@gfz-potsdam.de

DPF sensitivity

Comparison of sensitivities

Better in low orders (large scale) ← Sensors

Worse in high orders (small scale) ← Altitude

Report for Mission Selection Gravity Field and Steady-State Ocean Circulation Mission ESA SP-1233(1) July 1999.

GW and Earth observations

DPF orbit: altitude 500km, polar-orbit Earth model : EGM2008 (order 2190) → Estimate observed signals

1. DECIGO Pathfinder

Overview, Design

2. Science

GW, Gravity of the Earth
 Status of DPF
 R&Ds, Mission selection
 Summary

Interferometer Module

Interferometer

Module

Interferometer Module : Test mass + IFO

Test-mass module → Gravity reference •BBM of Module, Sensor, Actuator, Clump/Release •µ-Grav. Exp. Hosei, NAOJ, Ochanomizu, Stanford

Interferometer

→ GW, Gravity observation

•30cm IFO BBM Digital control PackagingMonolithic Opt.

NAOJ, U-Tokyo

Laser sensor → Small MI

BBM testSensitivity meas.

ERI, U-Tokyo

Presentations by S. Sato Y. Michimura A. Shoda

Stabilized Laser Module

Stabilized Laser : Laser source + Stabilization system

Yb:YAG (NPRO or Fiber laser) → Laser source

Prototype on a breadboard

•BBM development

UEC, NASA/GSFC

I₂ absorption line → Frequency reference

> •BBM development. •Stability meas.

UEC, NICT

Stabilized Laser Module

Presentations by K.Numata

Attitude and Drag-free control

Attitude and Drag-free control : Structure, Thrusters, Control

8th LISA symposium (July 1, 2010, SLAC, Stanford)

JAXA, NDAJ, Tokai-U

•BBM and system design

Signal processing and Control

🗉 Signal

processor

Test-mass control

Signal Processing and Control : SpaceWire-based system

SpC2 + SpW system → Signal processing and install. ctrl

Space demonstration bySDS-1/SWIM

SWIMmn demonstration → Test mass control in orbit

JAXA, U-Tokyo, Kyoto

Satellite Bus

Poster by Wataru Kokuyama

DPF mission status

DPF : One of the candidate of JAXA's small satellite series

> At least 3 satellite in 5 years with Standard Bus + M-V follow-on rocket

1st mission (2012): SPRINT-A/EXCEED
2nd mission (~2013/14) : ERG DPF survived until final two
3rd mission (~2015/16) : TBD

DPF is one of the strongest candidates of the 3rd mission

SPRINT-A /EXCEED UV telescope mission

Next-generation Solid rocket booster (M-V FO) Fig. by JAXA

1. DECIGO Pathfinder

Overview, Design

2. Science

GW, Gravity of the Earth
 3. Status R&Ds, Mission selection
 4. Summary

Summary

DECIGO Pathfinder

Important milestone for DECIGO Strong candidate of JAXA's satellite series

Science

GWs from galactic BHs Gravity of the Earth

R&Ds

BBM tests SWIM – under operation in orbit first precursor to space

Related Presentations

Plenary Session

Seiji Kawamura

DECIGO

Parallel Session

Shuichi Sato

DPF interferometer module

•Yuta Michimura BBM test for DPF interferometer Poster

Wataru Kokuyama In-orbit operation
 of small module SWIM

Ayaka Shoda

Earth Image: ESA

Observation of Earth's gravity by DPF

