
宇宙重力波望遠鏡 DECIGOとDPF

安東 正樹 (京都大学 理学研究科)

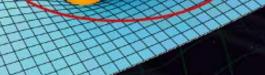
旨主

宇宙重力波望遠鏡DECIGO / DPF 必要とされる技術 の紹介

興味を持ってもらう 研究の参考にしてもらう 工学系研究者の協力 をお願いする 目次

重力波観測の意義 DECIGO / DPF 必要とされる技術

重力波による天文学



→ 重力を時空の性質と解釈

物質の変動、形状の変化

- → 重力場の変動
- → 時空の歪みのさざなみとして伝播

From presentation by Laura Cadonati

重力波の特徴

質量の加速度運動により生成 物質に対して強い透過力 波源のスケール < 波長 > バルクな情報

宇宙を観測する新しい手段 電磁波と相補的・独立な観測 他では見ることの出来ない現象 '晴れ上がり'前の初期宇宙 激しい天体現象の内部

重力波による観測

宇宙線による観測

ニュートリノ 高エネルギー 宇宙線

電磁波による観測

ガンマ線 X線 可視光 可外線 電波 一般相対性理論

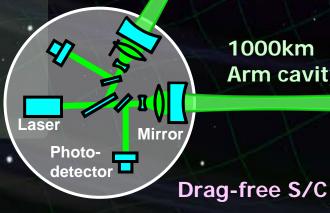
重力波による観測

連星合体現象 超新星爆発 パルサー 高周波数 重力波 低周波数 重力波

バックグラウンド 重力波

背景画: NASA/WMAP Science Team

初期宇宙の観測


DECIGO

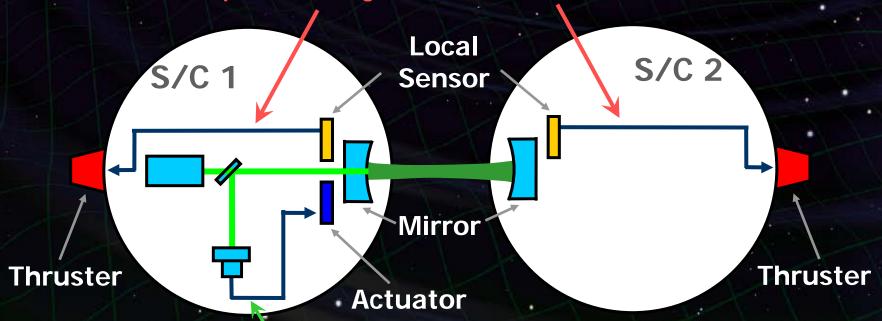
DECIGO

(Deci-hertz interferometer **Gravitational wave Observatory**)

宇宙重力波 望遠鏡(~2024) 観測周波数帯 0.1 Hz

基線長: 1000 km 3 S/C フォーメーションフライト 干渉計による精密計測 ドラッグフリー制御

1000km **Arm cavity**


干渉計とドラッグフリー制御

干渉計基線長

干渉計信号 → 鏡の位置制御 (レーザー周波数制御)

鏡とS/C間の距離

Displacement Signal between S/C and Mirror

Displacement signal between the two Mirrors

Fig: S. Kawamura

軌道と構成

DECIGO軌道の候補:

太陽周りのレコード盤軌道

Relative acc. 4x10⁻¹² m/s² (Mirror force ~10⁻⁹ N)

ラグランジュ点周りのハロー軌道

Relative acc. 4x10⁻⁷ m/s² (Mirror force ~10⁻⁴ N)

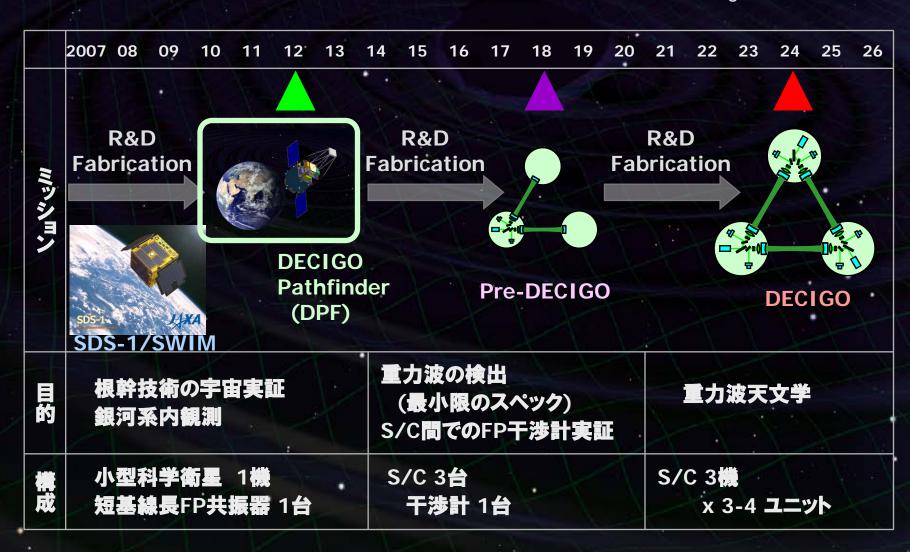
編隊構成

4 つの干渉計ユニット

- 2 overlapped units → 相関解析
- 2 separated units → 波源位置の特定

unit 60 deg Separated 7

overlapped

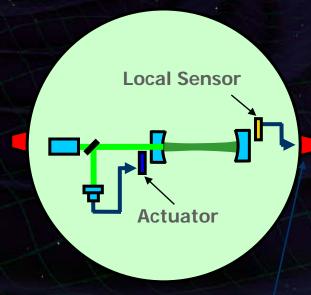

units

Separated

unit

DECIGOのロードマップ

Figure: S.Kawamura



DECIGO-PF

DECIGOパスファインダー (DPF)

DECIGOのための最初の前哨衛星 DECIGOの1000kmの腕を1機の衛星に凝縮

小型衛星 1 機 (95cm立方x2, 350kg)
地球周回軌道 (高度 500km, 太陽同期軌道)
フリーマス x2 → 基線長30cmのFP共振器
レーザー光源とその安定化システム
ドラッグ・フリーの組み込み

Thruster

DECIGOなどのための科学技術の確立 宇宙・地球の観測

DPF概要

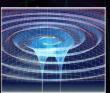
小型衛星 1 機 (95cm立方x2, 350kg) 地球周回軌道 高度 500km ミッション スラスタヘッド 中央処理演算器

DECIGOのための宇宙実証 科学技術の確立

宇宙・地球の観測 重力波の観測 地球重力場の観測

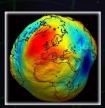
衛星バス 3Nスラスタ

衛星バス


干渉計モジュール

マスト構造

DPFが目指す科学的成果


宇宙・地球の観測

重力波観測

銀河中心付近の中間 質量ブラックホールの 合体や振動現象を観測.

地球重力場観測

1mm程度のジオイド高 分解能での地球重力 場観測.

科学技術の確立

宇宙干渉計による精密計測

宇宙空間におけるファブリ・ペロー干渉計の動作と精密計測の実証.

安定化レーザー光源の実現

宇宙において高い周波数 安定度を持つレーザー光 源の実現.

ドラッグフリー制御の実現

重力傾度による受動安定 化と能動制御を併用した、 ドラッグフリー制御の実現.

DPF技術開発

安定化レーザー光源

Yb:YAG (NPRO) 光源

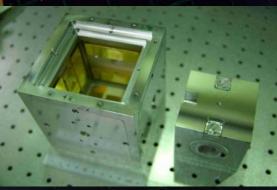
ヨウ素飽和吸収による安定化制御

- → 安定度向上, パッケージ化
 - ⇒ 電気通信大学 情報通信研究機構 (NICT) NASAゴダード

武者氏 資料より

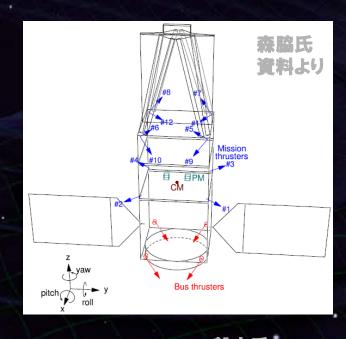
干渉計・ハウジング

プロトタイプの設計・製作


→ 基本性能の試験 地球重力場観測用センサの試作

> □ 国立天文台 (NAOJ) 東京大学・東大地震研究所 スタンフォード大

新谷氏資料より



DPF技術開発

姿勢制御・ドラッグフリー

構成 (構造・制御則)の検討 重力傾度安定による受動安定化 衛星にマスト構造を取り付ける ミッション部スラスタによるドラッグフリー制御

スラスタ

既存技術のシステム化検討 推力雑音評価装置 (スラスタスタンド) 製作 スリット型FEEPの試作

⇒ 宇宙航空研究開発機構 (JAXA) 東海大学, 防衛大学

DPF技術開発

信号処理·制御

SpaceWire/SpaceCube SDS-1/SWIM 1/23打上げ → 宇宙実証試験

東京大学, 京都大学
 宇宙航空研究開発機構 (JAXA)

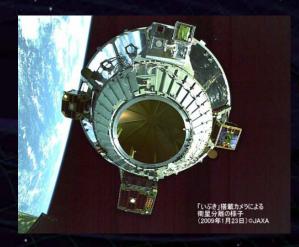


写真: JAXA

SpaceCube2: Space-qualified Computer

CPU: HR5000

(64bit, 33MHz)

System Memory:

2MB Flash Memory

4MB Burst SRAM

4MB Asynch. SRAM

Data Recorder:

1GB SDRAM

1GB Flash Memory

SpW: 3ch

Size: 71 x 221 x 171

Weight: 1.9 kg

Power: 7W

SWIMμν : User Module

Processor test board
GW+Acc. sensor
FPGA board
DAC 16bit x 8 ch
ADC 16bit x 4 ch
→ 32 ch by MPX
Torsion Antenna x2
~47g test mass

Data Rate: 380kbps

Size: 124 x 224 x 174

Weight: 3.5 kg Power: ~7W

SWIMµv センサーモジュール

超小型重力波検出器

SpW 通信の宇宙実証のためのセンサーモジュール 将来の宇宙重力波望遠鏡のための最初のステップ

TAM: Torsion Antenna Module with free-falling test mass (Size: 80mm cube, Weight: ~500g)

Test mass

~47g Aluminum, Surface polished Small magnets for position control

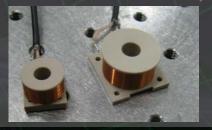
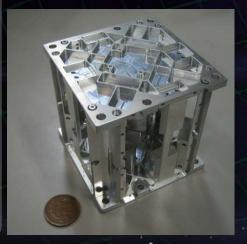


Photo sensor

Reflective-type optical
displacement sensor
Separation to mass ~1mm
Sensitivity ~ 10⁻⁹ m/Hz^{1/2}
6 PSs to monitor mass motion



Used for test-mass position control Max current ~100mA

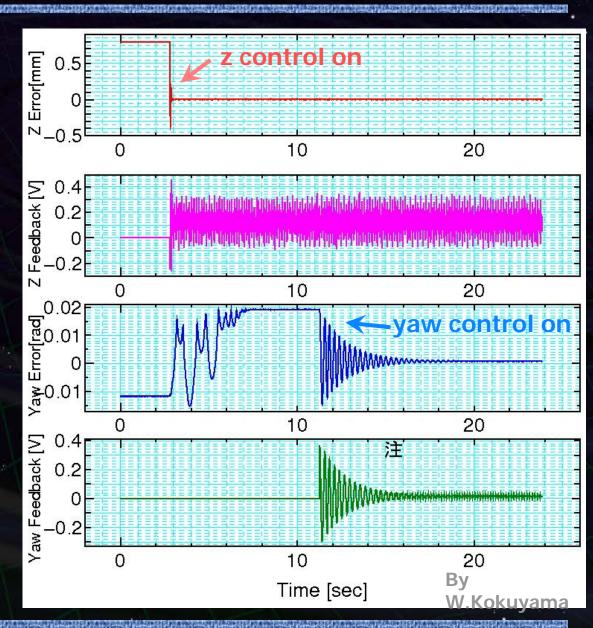
SWIMµv 軌道上実証

SWIM In-orbit operation

Test mass controlled

Error signal → zero

Damped oscillation (in pitch DoF)


Free oscillation in x and y DoF

Signal injection

→ OL trans. Fn.

Operation: May 12, 2009

Downlink: ~ a week

DPFミッションの現状

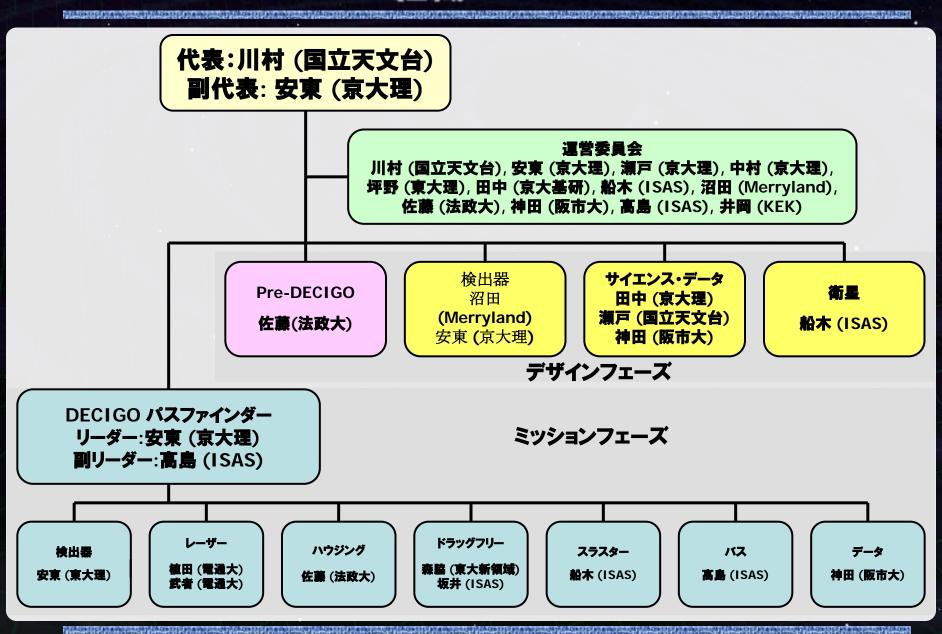
JAXAの小型科学衛星シリーズの候補

標準衛星バス + 次期固体ロケットを利用して 最低 3機の小型科学衛星を打ち上げる計画

最初のミッション(2012年)
SPRINT-A/EXCEED に決定済み
2番目のミッション: 選定中

2008年9月 ミッション提案書募集 → 決定せず 2009年3月 2号機ミッション再募集

候補: ERG, DPF, FFAST など 5ミッション


小型科学衛星1号機 SPRINT-A (旧TOPS)

Next-generation Solid rocket booster (M-V FO) Fig. by JAXA

DECIGO/DPFの技術

フォーメーションフライト 軌道の評価・設計 衛星間の精密計測,制御 ドラッグフリー・姿勢制御 低雑音スラスタ レーザー干渉計 安定化レーザー光源 宇宙でのレーザー干渉計 低雜音·精密計測 外乱の抑圧 S/C自身の雑音の低減 (振動,電磁場,温度,残留気体)

協力・サポート体制

- •LISAとの協力関係 LISA/LPFの技術情報や経験, サポートレターの提供 LISA-DECIGO workshop (2008.11)
- スタンフォード大グループとの協力
 Dan Debra: ドラッグフリー衛星の創始者, Gravity Probe Bの副PI DPFの帯電制御,
 DPFドラッグフリーへの協力
- ・NASAゴダードグループとの協力 宇宙用ファイバーレーザーの開発
- ・JAXA研究開発本部・誘導制御グループとの協力

 → DECIGOのフォーメーションフライト、DPFのドラッグフリー制御への協力
- ・東京大学ビッグバンセンター (RESCEU)
 DECIGOを主要プロジェクトとしてサポート (2009.4-)

まとめ

DECIGO: 他では得られない豊富なサイエンス

宇宙誕生の直後 ダークエネルギーの観測 銀河の形成

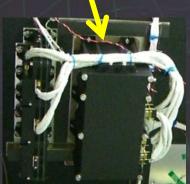
DECIGOパスファインダー

DECIGOのための前哨ミッション
JAXA 小型科学衛星シリーズの候補の1つ

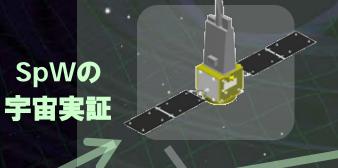
SWIM - 軌道実証が進められている 重力波検出器として最初の実証

旨主

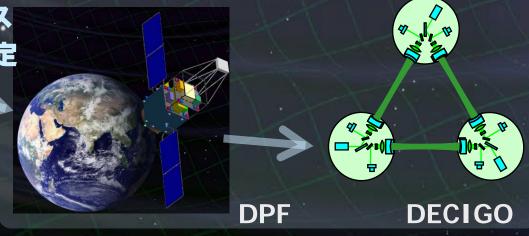
宇宙重力波望遠鏡DECIGO / DPF 必要とされる技術 の紹介


興味を持ってもらう 研究の参考にしてもらう 工学系研究者の協力 をお願いする

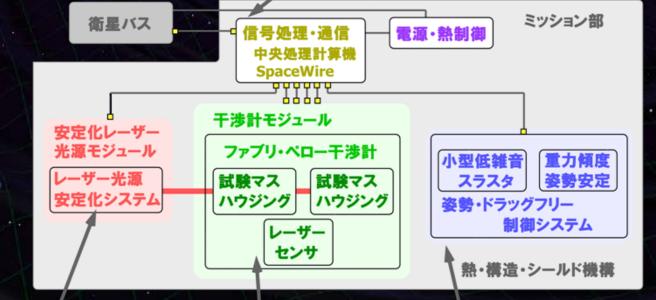
SWIM / SDS-1 の意義


SDS-1 (Small Demonstration Satellite - 1)

SWIM
(Space wire demonstration module)


小型科学 衛星シリーズ

ASTRO-H, etc.



テストマス 制御・測定

推進体制

神田(大阪市大) 中村, 田中, 瀬戸(京都大学) 井岡(KEK) データ解析、理論研究 高島、坂井(宇宙科学研究本部) 安東(京都大学)、中澤(東京大学) ミッション検討 バスとのインターフェース 信号処理システムの開発

DPF-WG 84名 DECIGO 137名

> 武者 (電気通信大学) 安定化レーザーの開発 長野 (情報通信研究機構) 光源安定度の評価

佐藤 (法政大学) 川村, ATC (国立天文台) 干渉計・ハウジングの開発 新谷 (東大地震研究所) 地球重力場観測用 レーザーセンサの開発 船木, 小泉 (宇宙科学研究本部) 堀澤 (東海大学), 中山 (防衛大) スラスタの開発

坂井(宇宙科学研究本部) 森脇(東京大学) 姿勢制御・ドラッグフリー システムの開発