Gravitational-wave observatories: LCGT and DECIGO

宇宙の 誕生

Masaki Ando

(Department of Physics, Kyoto University)

On behalf of LCGT Collaboration and DECIGO working group

~137億年

Introduction LCGT DECIGO Summary

1. Introduction 2. LCGT 3. DECIGO 4. Summary

Observation of the Universe

Neutrino High-energy CR

EM wave observation

Gamma X-ray Visible ray Infrared Microwave Nuclear Physics High-Density Matter General Relativity Relativity in Strong Gravitational-Field

4

Expanding the Horizon

Current GW detectors : <20Mpc obs. range However... we can expect only rare events (10⁻⁵-10⁻³ event/yr)

 \Rightarrow Next generation detectors

The 20th workshop on General Relativity and Gravitation (JGRG20, Sept. 23, 2010, YITP, Kyoto)

Roadmap of GW detectors

The 20th workshop on General Relativity and Gravitation (JGRG20, Sept. 23, 2010, YITP, Kyoto)

LCGT and DECIGO

LCGT (~2017) Terrestrial Detector → High frequency events

Target: GW detection

DECIGO (~2027) Space observatory → Low frequency sources

Target: GW astronomy

7

1. Introduction ☐ 2. LCGT **Overview and design Observable range R&D by CLIO** 3. DECIGO 4. Summary

LCGT (Large-scale <u>Cryogenic Gravitational-wave Telescope</u>) Next-generation GW detector in Japan

Cryogenic interferometer Mirror temperature: 20K

9

Underground site Kamioka mine, 1000m underground LCGT project was selected by the 'Facility for the advanced researches' program of MEXT.

Construction cost is partially approved: 9.8 BYen for first 3-year construction. (Original request: 15.5 BYen for 7 years.)

Baseline design is not changed: Requesting the additional cost for full construction of LCGT.
⇒ This talk is mainly on the baseline design.

LCGT interferometer

LCGT baseline design Arm length of 3km, Underground site of Kamioka Cryogenic mirror and suspension

High-power RSE interferometer with cryogenic mirrors

Resonant-Sideband Extraction Input carrier power : 75W DC readout

Main IFO mirror 20K, 30kg (Φ250mm, t150mm) Mech. Loss : 10⁻⁸ Opt. Absorption 20ppm/cm

Suspension Sapphire fiber 16K Mech. Loss : 2x10⁻⁸

Sensitivity Curve

Comparable with Ad.LIGO Ad.VIRGO → Global network observation

Readout-noise reduction

High-freq. (> 100 Hz) improvement

Shot noise reduction by high power in arm cavities

Optical configuration

Fabry-Perot Michelson interferometer with RSE (Resonant-Sideband Extraction)

High-power laser source

Nd:YAG laser source with 150W output power

Low-loss mirror Less than 45ppm by reflection

Thermal-noise reduction

Mid.-freq. (around 100 Hz) improvement

Cryogenics

Mirror $\sim 20 \mathrm{K}$ Suspension ~16K Sapphire mirror

→ High mechanical Q-value at low temperature

Thermal noise

Cryogenic is a straight-forward way to reduce thermal noise. Cryogenic mirror and suspension of CLIO 100-m interferometer

> Low-vibration Cryo-cooler design

14

Seismic-noise reduction

Low-freq. (< 100 Hz) improvement

Quiet site

Kamioka underground site (~1000km underground) Lower seismic disturbance by 2-3 orders

Multi-stage and Low-freq. vibration isolation system

15

1. Introduction 2. LCGT **Overview and design Observable range R&D by CLIO 3. DECIGO** 4. Summary

Observable range

Primary purpose of LCGT : Detection of GW → First target : Neutron-star binary inspirals

CObs. Range 120Mpc (SNR=8, Avg. over sky pos. an pol.)

The 20th workshop on General Relativity and Gravitation (JGRG20, Sept. 23, 2010, YITP, Kyoto)

Detection rate of LCGT

Neutron-star binary inspirals events

Observable range sensitivity curve \rightarrow 120 Mpc Galaxy number density : $\rho = 1.2 \times 10^{-2}$ [Mpc⁻³] R.K. Kopparapu et.al., ApJ. 675 1459 (2008) Event rate :

 $\mathcal{R} = 83.0^{+209.1}_{-66.1}$ [events/Myr] V. Kalog

V. Kalogera et.al., ApJ, 601 L179 (2004)

Detection rate 6.9 events/yr

Detection probability

Probability to detect at least one event in one-year observation

Success probability of the LCGT project

Assume Poisson distribution

The 20th workshop on General Relativity and Gravitation (JGRG20, Sept. 23, 2010, YITP, Kyoto)

1. Introduction 2. LCGT **Overview and design Observable range R&D by CLIO** 3. DECIGO 4. Summary

CLIO

CLIO sensitivity

Sensitivity improvement with cryogenic operation

Introduction LCGT DECIGO

Overview and design DECIGO Pathfinder Space demonstration by SWIM 4. Summary

DECIGO

DECIGO (Deci-hertz interferometer <u>G</u>ravitational wave <u>O</u>bservatory)

Space GW antenna (~2027) Obs. band around 0.1 Hz

'Bridge' the obs.gap between LISA and Terrestrial detectors

DECIGO Interferometer

Interferometer Unit: Differential FP interferometer drm Cavity **Baseline length:** 1000 km 3 S/C formation flight **3 FP interferometers Drag-free control** 1000km Arm cavity Lase Mirro Photo-

detector

The 20th workshop on General Relativity and Gravitation (JGRG20, Sept. 23, 2010, YITP, Kyoto)

Drag-free S/C

Targets and Science

IMBH binary inspiral NS binary inspiral Stochastic background

Galaxy formation (Massive BH) Cosmology (Inflation, Dark energy)

IMBH inspiral and Merger

DECIGO will observe Intermediate-mass BH (IMBH) binary merger with SNR>6000 for z~1 source

Information on the formation of Supermassive BHs at the center of galaxies

<mark>戎崎俊一(理化学研究所) 先生の</mark>web**ページより引用** http://atlas.riken.go.jp/~ebisu/smbh.html

Constraint on dark energy

DECIGO will observe

10⁴⁻⁵ NS binaries at z~1

Precise 'clock' at cosmological distance

'Standard Siren'

Relationship between distance and redshift Distance: chirp waveform Redshift: host galaxy

→ Information on acceleration of expansion of the universe

Determine cosmological parameters Absolute and independent measurement

Seto, Kawamura, Nakamura, PRL 87, 221103 (2001)

Angular resolution ~10arcmin (1 detector) ~10arcsec (3 detectors)

at z=1

Stochastic Background GWs

The 20th workshop on General Relativity and Gravitation (JGRG20, Sept. 23, 2010, YITP, Kyoto)

Pre-Conceptual Design

Interferometer Unit: Differential FP interferometer

Arm length:1000 kmFinesse:10Mirror diameter:1 mMirror mass:100 kgLaser power:10 WLaser wavelength: 532 nm

S/C: drag free 3 interferometers

Drag-free S/C The 20th workshop on General Relativity and Gravitation (JGRG20, Sept. 23, 2010, YITP, Kyoto) 30

Mirro

Lase

Photodetector Arm Cavity

Arm cavity

Interferometer Design

Transponder type vs Direct-reflection type Compare : Sensitivity curves and Expected Sciences

Decisive factor: Binary confusion noise

Cavity and S/C control

Cavity length change PDH error signal → Mirror position (and Laser frequency) Relative motion between mirror and S/C Local sensor → S/C thruster

Displacement Signal between S/C and Mirror

Requirements

Sensor Noise Shot noise $3 \times 10^{-18} \text{ m/Hz}^{1/2}$ (0.1 Hz) $\swarrow \times 10 \text{ of LCGT}$ in phase noise

Other noises should be well below the shot noise Laser freq. noise: 1 Hz/Hz^{1/2} (1Hz) Stab. Gain 10⁵, CMRR 10⁵

Acceleration Noise Force noise 4x10⁻¹⁷ N/Hz^{1/2} (0.1 Hz) ert > x 1/50 of LISA

External force sources Fluctuation of magnetic field, electric field, gravitational field, temperature, pressure, etc.

Orbit and Constellation

Candidate of orbit:

Record-disk orbit around the Sun Relative acc. 4x10⁻¹² m/s² (Mirror force ~10⁻⁹ N)

Halo orbit around L2 (or L1) Relative acc. 4x10⁻⁷ m/s² (Mirror force ~10⁻⁴ N)

Constellation 4 interferometer units 2 overlapped units → Cross correlation 2 separated units → Angular resolution

Roadmap

35

Introduction LCGT DECIGO

Overview and design DECIGO Pathfinder Space demonstration by SWIM 4. Summary

Roadmap

37

DECIGO-PF

DECIGO Pathfinder (DPF) First milestone mission for DECIGO Shrink arm cavity DECIGO 1000km → DPF 30cm

Single satellite (Payload ~1m³, 350kg) Low-earth orbit

(Altitude 500km, sun synchronous) 30cm FP cavity with 2 test masses Stabilized laser source Drag-free control

DPF satellite

DPF Payload

Size : 950mm cube Weight : 150kg Power : 130W Data Rate: 800kbps Mission thruster x12

Power Supply SpW Comm.

Satellite Bus

('Standard bus' system) Size :

950x950x1100mm Weight: 200kg SAP: 960W Battery: 50AH Downlink: 2Mpbs DR: 1GByte 3N Thrusters x 4

DPF mission payload

Mission weight : ~150kg Mission space : ~95 x 95 x 90 cm Drag-free control Local sensor signal → Feedback to thrusters

Laser source Yb:YAG laser (1030nm) Power : 25mW Freq. stab. by Iodine abs. line Fabry-Perot interferometer Finesse : 100 Length : 30cm Test mass : ~1kg Signal extraction by PDH

Targets of DPF

Scientific observations Gravitational Waves form BH mergers -> BH formation mechanism Gravity of the Earth -> Geophysics, Earth environment

Science technology Space demonstration for DECIGO -> Most tech. with single satellite (IFO, Laser, Drag-free) Precision measurement in orbit -> IFO measurement under stable zero-gravity

Earth Image: ESA

8th LISA symposium (July 1, 2010, SLAC, Stanford)

DPF sensitivity

The 20th workshop on General Relativity and Gravitation (JGRG20, Sept. 23, 2010, YITP, Kyoto)

GW target of DPF

Blackholes events in our galaxy

IMBH inspiral and merger $h \sim 10^{-15}$, $f \sim 4$ Hz Distance 10kpc, $m = 10^3 M_{sun}$ Obs. Duration (~1000sec)

BH QNM $h \sim 10^{-15}$, $f \sim 0.3$ Hz Distance 1Mpc, $m = 10^5 M_{sun}$

Observable range covers our Galaxy (SNR~5)

Hard to access by others → Original observation

Earth's Gravity Observation

Measure gravity field of the Earth from Satellite Orbits, and gravity-gradiometer comprehensive and homogeneous-quality data

Seasonal change of the gravitational potential observed by GRACE

Determine global gravity field
→ Basis of the shape of the Earth (Geoid)
Monitor of change in time
→ Result of Earth's dynamics Ground water motion
Strains in crusts by earthquakes and volcanoes

Satellite Gravity missions

3-types of satellite gravity missions

Satellite-to Satellite tracking High-Low •Observe satellite orbit by global positioning system (GPS,...)

•Cancel drag-effects by accelerometer

Courteev

CHAMP (GFZ, 2000-)

Satellite-to Satellite tracking Low-Low

Distance meas. by along-track satellites
Cancel drag-effects by accelerometer

GRACE (NASA, 2002-)

Satellite Gravity Gradiometry •Observe potential by gravity gradiometer •Drag-free control for cancellation of drags

DPF sensitivity

46

Comparison of sensitivities

Better in low orders (large scale) ← Sensors

Worse in high orders (small scale) ← Altitude

Report for Mission Selection Gravity Field and Steady-State Ocean Circulation Mission ESA SP-1233(1) July 1999.

DPF mission status

DPF : One of the candidate of JAXA's small satellite series

> At least 3 satellite in 5 years with Standard Bus + M-V follow-on rocket

1st mission (2012): SPRINT-A/EXCEED
2nd mission (~2013/14) : ERG DPF survived until final two
3rd mission (~2015/16) : TBD

DPF is one of the strong candidates of the 3rd mission

SPRINT-A /EXCEED UV telescope mission

Next-generation Solid rocket booster (M-V FO) Fig. by JAXA

Introduction LCGT DECIGO

Overview and design DECIGO Pathfinder Space demonstration by SWIM 4. Summary

Roadmap

49

SWIM launch and operation

Tiny GW detector module Launched in Jan. 23, 2009 ↓ In-orbit operation

TAM: Torsion Antenna Module with free-falling test mass (Size : 80mm cube, Weight : ~500g) Test mass

rest mass

~47g Aluminum, Surface polished Small magnets for position control

Photo sensor

Reflective-type optical displacement sensor Separation to mass ~1mm Sensitivity ~ 10⁻⁹ m/Hz^{1/2} 6 PSs to monitor mass motion

SWIM observation

51

1. Introduction 2. LCGT 3. DECIGO 4. Summary

Summary (1)

LCGT : Project started Costs have been partially funded Form global network with Ad. LIGO and Ad. VIRGO

R&D and detailed design CLIO: Improved sensitivity at cryogenic temperature Designs and developments underway Summary (2)

DECIGO : Fruitful Sciences Very beginning of the Universe Dark energy Galaxy formation

DECIGO Pathfinder

Important milestone for DECIGO Strong candidate of JAXA's satellite series

SWIM – under operation in orbit first precursor to space!

