小型重力波観測衛星DPF と DECIGO

安東正樹 (京都大学・大学院理学研究科),

川村静児,佐藤修一,中村卓史,坪野公夫,新谷昌人, 船木一幸,井岡邦仁,神田展行,森脇成典,武者満,中澤知洋, 沼田健司, 坂井真一郎, 瀬戸直樹, 高島健, 田中貴浩, 長野重夫, **を一博, 青柳巧介, 新井宏二, 浅田秀樹, 麻生洋一, 千葉剛** 端山和大,疋田渉,姫本宣朗,平林久,平松尚志,洪鋒雷, 『秀之,細川瑞彦, 市來淨與,池上健,井上開經 石徽白晃治,石原秀樹,石川毅彦,石崎秀晴,伊東宏之, 伊藤洋介,河島信樹,川添虫子,岸本直子,木内建太, 小林史歩,郡和範,小泉宏之,小嶌康史,苔山圭以子, 穀山渉,固武廛,古在由秀,工藤秀明, 國中均,黑田和明,前田惠一,松原英雄,蓑泰志, 宮川治, 三代木伸二, 森本睦子, 森岡友子, 森澤理之, 向山信治, 内藤勲夫, 中村康二, 中野寬之, 中尾憲 中須賀真一,中山宜典,西田恵里奈,西山和孝,西澤篤志, 丹羽佳人, 能見大河, 大渕喜之, 大橋正健, 大石奈緒子, 大河正志, 岡田則夫, 小野里光司, 大原謙一, 佐合紀親, 西條統之,阪上雅昭,阪田紫帆里,佐々木節,佐藤孝

高橋竜太郎, 高橋龍一, 高橋忠幸, 高橋弘毅, 高森昭光, 高野忠, 谷口敬介, 樽家篤史, 田代寛之, 鳥居泰男, 豊嶋守生, 辻川信二, 常定芳基, 上田暁俊, 植田憲一, 歌鳥昌由, 芳林野花, 山川宏, 山元一広, 山崎利孝, 横山順一, 柳哲文, 吉田至順, 吉野,

pulse operations proving the contemporary the contempor

小型衛星 1 機 (重量 350kg) 地球周回軌道 (高度 500km) 非接触保持された試験マスの変動を レーザー干渉計を用いて精密計測

宇宙・地球の観測

→ 銀河の成り立ち、地球環境モニタ

先端科学技術の確立

→ 宇宙・無重力環境利用の新しい可能性

小型科学衛星3号機 (~2015年) を目指す

目次

イントロダクション - DECIGO計画 - DPFの科学的意義 衛星概要と開発状況 まとめ

イントロダクション - DECIGO計画 -

DECIGO

光共振型マイケルソン干渉計 **アーム長:** 1000 km

DECIGO (DECI-hertz interferometer

Gravitational wave Observatory)

宇宙重力波望遠鏡 (~2027)

→ 他では得られない豊富なサイエンス

宇宙の成り立ちに関する知見

インフレーションの直接観測

ダークエネルギーの性質

ダークマターの探査

銀河形成に関する知見

ブラックホール連星の観測

互いに1000km離れた3機のS/C

非接触保持された鏡間距離を

レーザー干渉計によって精密測距

太陽公転軌道

最大4ユニットで相関をとる

初期宇宙の観測

DECIGOのロードマップ

Figure: S.Kawamura

DPFの科学的意義

DECIGOパスファインダー

DECIGOパスファインダー (DPF)

DECIGOのための最初の前哨衛星

DECIGO: 基線長 1000kmの編隊飛行

→ DPF 1機の衛星 (基線長30cm干渉計)

350kg級 小型衛星

地球周回軌道 (高度 500km)

DECIGOの主要技術の宇宙実証 レーザー干渉計、安定化レーザー光源、 ドラッグフリーシステム、データ取得と解析

DPFの目指す科学的成果

宇宙・地球の観測

重力波観測

銀河中心付近の中間質量ブラックホールの合体現象を観測.

□銀河形成への知見

地球重力場観測

1mm程度のジオイド高分解能での地球重力場観測.

地球環境モニタ

先端科学技術の確立

- ・干渉計による精密変動計測
- ・安定化レーザー光源の実現
- ・ドラッグフリーによる低振動環境

宇宙環境利用の新しい可能性

DPF単独で期待 できる科学的成果

「小型科学衛星」 としての意義も持つ

DPFの目指す科学的成果

宇宙・地球の観測

重力波観測

銀河中心付近の中間質量ブラックホールの合体現象を観測.

■銀河形成への知見

地球重力場観測

1mm程度のジオイド高 分解能での地球重力 場観測.

地球環境モニタ

先端科学技術の確立

無重力精密実験プラットホーム

- ・干渉計による精密変動計測
- ・安定化レーザー光源の実現
- ・ドラッグフリーによる低振動環境

宇宙環境利用の新しい可能性

DPFの観測対象

我々の銀河系内のブラックホール 合体現象からの重力波

DPFの観測周波数 (0.1-1Hz)

中間質量ブラックホール

(質量 10³ - 4x10⁵ M_{sun}) が対象

最大100kpcの距離まで観測可能

八木 (京大理)

□ 銀河中心BH, 球状星団中のBH の形成メカニズムに対する知見

地球重力場観測

人工衛星から地球重力ポテンシャルを観測

Globalな**重力ポテンシャルの決定**→ 密度分布のモニタ

時間変動のモニター 地球規模の水の監視 (海洋・陸水・氷床等) 地震・火山噴火にともなう 地殻変動の検知・予測

運用中の衛星

GRACE: 2機の衛星の編隊飛行

GOCE: 1機の衛星に重力勾配計

次世代計画: GRACE2

GRACEと同等の構成・感度

地球重力場観測の観測網

DPF --- GRACEと同等の感度を持つ 高感度干渉計 衛星のドラッグフリー精密制御

GRACE

L ~ 220km, Δ L ~ 5 μ m

 $\rightarrow \Delta L/L \sim 2 \times 10^{-11}$

DPF

 $L \sim 0.3 m$, $\Delta L \sim 10^{-11} m$

 $\rightarrow \Delta L/L \sim 3 \times 10^{-11}$

GRACEとGRACE2の間 (2012-16年) の空白を埋める可能性 → 独自の成果, 国際貢献

The Future of Satellite Gravimetry

Report from the

Workshop on The Future of Satellite Gravimetry

12-13 April 2007, ESTEC, Noordwijk, The Netherlands

Radboud Koop and Reiner Rummel (Eds.)

DPFの目指す科学的成果

宇宙・地球の観測

重力波観測

銀河中心付近の中間質量ブラックホールの合体現象を観測.

□銀河形成への知見

地球重力場観測

1mm程度のジオイド高 分解能での地球重力 場観測.

地球環境モニタ

先端科学技術の確立

無重力精密実験プラットホーム

- ・干渉計による精密変動計測
- ・安定化レーザー光源の実現
- ・ドラッグフリーによる低振動環境

宇宙環境利用の新しい可能性

DPFで実証される科学技術

DPFで実証される技術

宇宙干渉計 による 精密計測

6x10⁻¹⁶ m/Hz^{1/2} の変位感度

10⁻¹⁴ N/Hz^{1/2} の外力雑音

安定化レーザー の宇宙実証

0.5 Hz/Hz^{1/2} の周波数安定度

ドラッグフリー制御の実現

衛星変動安定度 10⁻⁹ m/Hz^{1/2}

スラスタ雑音 10⁻⁷ N/Hz^{1/2} 意義·波及効果

基礎物理学実験 無重力環境下での精密計測 宇宙・衛星内環境の理解

宇宙空間で、高い安定度の実現さまざまな応用

地球環境観測 (ADM-Aeolus, GIFTS), 基礎物理実験, マイクロ波標準, 通信 (ACES), 惑星探査 (TPF-C), X線観測 (MAXIM), フォーメーションフライト (LISA, GRACE-follow-on)

長時間安定な無重力環境 →宇宙環境利用の新しい可能性 基礎物理学実験, 材料工学

フォーメーションフライト

(TPF-C, LISA, GRACE follow-on)

小型低雑音スラスタ

衛星概要と開発状況

第10回 宇宙科学シンポジウム (2010年1月8日, 宇宙科学研究本部)

DPFシステム概要

DPF Payload

Size: 950mm cube

Weight: 150kg Power: 130W

Data Rate: 800kbps Mission thruster x12

Power Supply SpW Comm.

Satellite Bus

('Standard bus' system)

Size:

950x950x1100mm

Weight: 200kg

SAP: 960W

Battery: 50AH

Downlink: 2Mpbs

DR: 1GByte

3N Thrusters x 4

DPFミッション機器構成

ミッション機器重量: 150kg

ミッション機器空間: 95 cm立方

ドラッグフリー

ローカルセンサで相対変動検出 → スラスタにフィードバック

レーザー光源

Yb:YAGレーザー 出力 25mW ヨウ素飽和吸収による 周波数安定化

ファブリー・ペロー共振器

フィネス: 100

基線長:30cm

試験マス:質量 数kg

PDH法により信号取得・制御

推進体制

神田(大阪市大) 中村,田中,瀬戸(京都大学) 井岡(KEK),横山(東京大学) データ解析、理論研究 高島, 坂井 (宇宙科学研究本部) 安東(京都大学), 中澤(東京大学) ミッション検討 バスとのインターフェース 信号処理システムの開発

DPF-WG 84名 DECIGO 137名

> 沼田 (NASA/GSFC) レーザー光源の開発 武者 (電気通信大学) 安定化レーザーの開発 長野 (情報通信研究機構) 光源安定度の評価

佐藤(法政大学) 上田,川村,ATC(国立天文台) 干渉計・ハウジングの開発 麻生(東京大学) 干渉計の開発 新谷(東大地震研究所) 船木, 小泉 (宇宙科学研究本部) 堀澤 (東海大学), 中山 (防衛大) スラスタの開発

森脇 (東京大学) 坂井, 河野 (JAXA) 姿勢制御・ドラッグフリー システムの開発

干渉計モジュール

レーザー干渉計:試験マス + 干渉計 + センサ をモジュール化

試験マスモジュール 重力・重力波を観測するための基準

BBM開発

佐藤, 鳥居, 若林, 江尻, 鈴木, 川村, Sun (法政大, NAO, お茶大,Stanford大)

干渉計モジュール

→ 重力波観測, 重力勾配計

BBM開発 上田, 麻生, 道村 (NAO, 東大理)

レーザーセンサ 重力観測用の 高感度変位センサ

BBM開発

新谷, 麻生, 道村 (東大地震研, 東大理)

干涉計

モジュール

安定化レーザー光源

安定化レーザー光源:光源 + 安定化システムをモジュール化

Yb:YAG 光源(ファイバーレーザー) → 小型・軽量化, 耐振動性

沼田 (NASA/GSFC)

ョウ素飽和吸収 による安定化制御

→ 周波数基準 摄乱耐性

BBM開発

BBM開発

武者,中村(電気通信大) 長野 (NICT)

姿勢・ドラッグフリー制御

姿勢・ドラッグフリー制御:衛星構造検討,制御則,ミッションスラスタ

衛星構成,熱•構造検討

重力傾度安定 衛星外乱評価 ドラッグフリー制御則

衛星・スラスタ構成検討 森脇, 坂井, 河野 (東大・新領域, JAXA)

小型・低雑音スラスタシステム スラスタ開発,推力雑音測定装置 スラスタシステム検討

船木, 中川, 堀澤, 小泉 (JAXA, 防衛大, 東海大)

信号処理・制御システム

信号処理・制御システム: SpWベースの信号処理システム

SpC2 + SpW信号処理システム → SDS-1/SWIMによる宇宙実証

運用中

試験マスの非接触制御と精密計測 → SWIMによる宇宙実証

高島, 穀山, 安東, ... (JAXA, 東大, 京大)

制御モジュール

体制の強化

- ・LISAとの協力関係 LISA/LPFの技術情報や経験, サポートレターの提供 LISA-DECIGO workshop (2008.11)
- スタンフォード大グループとの協力

Dan Debra: ドラッグフリー衛星の創始者, Gravity Probe Bの副PI DPFの帯電制御, DPFドラッグフリーへの協力

- ・JAXA研究開発本部・誘導制御グループとの協力
 - → DECIGOのフォーメーションフライト、DPFのドラッグフリー制御への協力
- ・東京大学ビッグバンセンター (RESCEU)
 DECIGOを主要プロジェクトとしてサポート (2009.4-)
- ・地球重力場観測グループ (京大理,東大地震研,地球研,NAOJ)DPFでの観測,データ解析,得られる科学的成果の検討
- ・国立天文台 先端技術センター (ATC) 中核機関としての DECIGO/DPFサポート 議論開始

DECIGO-PF

DECIGOパスファインダー (DPF)
DECIGOのための最初の前哨衛星

小型衛星 1 機 (95cm立方x2, 350kg)
 地球周回軌道 (高度 500km, 太陽同期軌道)
 試験マス x2 → 基線長30cmのFP共振器
 安定化レーザー光源,ドラッグ・フリー制御

宇宙・地球の観測

→ 銀河の成り立ち、地球環境モニタ

先端科学技術の確立

→ 無重力環境利用の新しい可能性

BBM試作・試験 SDS-1/SWIMによる宇宙実証 が進行中

関連ポスター講演
P4-38 高島健ほか
SDS-1搭載スペースワイヤーを
用いた宇宙実験プラットホーム
(SWIM)の成果について

P2-125 穀山 渉 ほか SWIM搭載超小型重力波 検出器の開発・運用

P2-126 佐藤 修一 ほか DPFのための 試験マスモジュールの開発

DPF スケジュール (暫定)

2009 2013 2015 2010 2011 2012 2014 全体スケジュール 小型重力波観測衡星(DPF) スケジュール ▲ システム確認書 システム要求確定 プロジェクト移行 部品·調達機器 バスモジュール ミッション機器 概念設計 (Pre Phase-Phase-A 基本構成コンポーネントの開き コンポーネント性能評価試験 基本設計・仕様調整 最終設計書 Byジョン提案書 基本仕様設計書 ミッション定義審査 システム要求審査 熱・横浩王子ル試験 仕様の再検診

概念設計

BBM

EM / pFM

FM

衛星FM

総合試験

ミッション提案
TRL 4以上が必要
'基本技術要素が同時に動作し、
実証モデルとして性能を発揮し
ていること'

コンポーネントFM完成 仕様を満たす 各種環境試験に合格

衛星スケールの検討

	中型衛星 (ASTRO-X)	小型科学衛星 (SPRINT-X)	技術実証衛星 (SDS-X)	大学衛星 (Cube sat.)
衛星 サイズ [m]	1 – 10	1 – 3	0.5 – 1	0.1-0.5
衛星重量 [kg]	~ 2000	~ 400	~ 100	~ 10
開発期間 [年]	~ 10	~ 6	~ 4	~ 3
コスト [億円]	~ 200	~ 70	~ 5	~ 0.1
期待できる成果	(Pre-DECIGO) 重力波の検出 フォーメーション フライト	(DPF) 観測データ取得 根幹技術の 総合試験	(SWIM) 根幹技術の 個別試験 (XDrag-free)	動作試験原理実証

観測周波数帯と観測対象

地上干渉計: 10Hz - 1kHz → 中性子星など

DECIGO : 0.1 - 1Hz → 中間質量BHなど, 初期宇宙からの重力波

LISA : 1mHz – 10mHz → 大質量BHなど

LCGT and DECIGO

LCGT (~2016)

Terrestrial Detector

→ High frequency events

Target: GW detection

DECIGO (~2027)

Space observatory

→ Low frequency sources

Target: GW astronomy

他プロジェクトとの関係

地上重力波望遠鏡との関係

日本の重力波のグループ

→ LCGT: 最優先のプロジェクト

DECIGO: その先の中心プロジェクト

重力波/宇宙というフロンティアへの意欲

DECIGO/DPFには, LCGT以外からの研究者/学生 も多く参入 LCGT: 予算獲得のために準備中 計画最初の3 年程度は、トンネル掘削や真 空槽設置などの工事が主であり、現在と同 程度のエフォート率を維持

DPFが目指す科学的成果

DPFが目指す科学的成果

宇宙・地球の観測

重力波観測

地上での観測が困難な周波数帯(0.1Hz)での重力波の観測.銀河中心の中間質量ブラックホールの合体や振動現象を観測対象とする。

地球重力場観測

1mm程度のジオイド高分解能での地球重力場観測. 小型ユニット化されたGPSと加速度計を用い、他ミッションより1桁良い感度での観測を目指す.

科学技術の確立

宇宙干渉計による精密計測

宇宙空間におけるファブリ・ペロー 干渉計の動作と精密計測の実証 衛星内に試験マスを非接触で低 雑音保持する技術の実証.

安定化レーザー光源の実現

宇宙において高い周波数安定度を持つレーザー光源の実現. ヨウ素吸収線を用い、既存ミッションを超える安定度の実現を目指す.

ドラッグフリー制御の実現

重力傾度による受動安定化と能動制御を併用した、全自由度ドラッグフリー制御の実現.制御則と低雑音スラスタの宇宙実証を目指す.

DPFによる重力波の観測

球状星団中のBH

中心付近の星の運動から BH質量を推定

⇒ BH同士の合体からの重力波で期待できるSNR 等質量, 質量比1:1/3, 100Msun BHが落下の場合

	NGC#	BH質量 [Msun]	距離 [kpc]	SNR (同質量)	SNR (1:1/3)	SNR +100Msun	速度分散 [km/sec]
	6441	12,424	11.2	36.4	22.2	3.7	19.5
Globular clusters known	6256	4,754	6.9	26.6	16.2	4.3	15.4
to have black holes	7078	4,388	10.3	16.6	10.2	2.8	15.1
	6093	3,720	10.0	14.9	9.1	2.7	14.5
M15	104	820	4.5	9.4	5.7	3.6	10
	1851	1,348	12.1	5.3	3.2	1.6	11.3
	6681	820	9.0	4.7	2.9	1.8	10
1920 Contract Contrac	6293	366	8.8	2.5	1.5	1.4	8.2
	5286	444	11.0	2.3	1.4	1.2	8.6
Our Sun	6522	228	7.8	1.9	1.1	1.3	7.3
Milley Way Calayou	5904	142	7.5	1.3	0.8	11.1	6.5
Milky Way Galaxy	6325	133	8.0	1.2	0.7	1.0	6.4
(artist's concept)	6752	45	4.0	0.9	0.6	1.3	4.9
	7099	89	8.0.	0.8	0.5	0.9	5.8
Credit: NASA, STSci	6284	171	15.3	0.7	0.5	0.6	6.8
	5272	41	10.4	0.3	0.2	0.5	4.8
		(我々の銀河	「内に約	150の球状	星団)		

DPF成功基準

		最低限の成功基準	所期の成功基準	所期の成果を超える成功基準
	DPF全体	各サブシステムの基本動作を確認する.	各サブシステムの期待性能での動作と、重力波・地球重力場観測.	性能の最適化と長期安定観測。
る成り	重力波観測	重力波観測データの取得.	地球周回時間(100分程度)を超える期間,所期の感度(歪み感度 2×10^{-15})での重力波観測データの取得.重力波振幅の上限値と 雑音源の評価.	6ヶ月以上に渡る観測と重力波信 号の探査. 背景重力波の上限値 と空間分布を求める.
観測によ	地球重力場観測	衛星変動の長周期成分から地球 重力場を観測する.	試験マス-衛星変動信号と軌道情報から1mm程度のジオイド高分解能で地球重力場を観測し、観測精度を評価する.	測し, データの再現性や重力場の
	安定化レーザー光源	レーザー光源と安定化システムの 動作と安定度を評価する.		地上で達成されていないレベルの 安定度を達成する.
科学技術の確立	宇宙干渉計	ファブリ・ペロー干渉計を安定に制御し、基線長変動を測定する. ローンチ・ロック機構を動作させ、 試験マスを衛星内に非接触保持する.		雑音源の評価と制御系の最適化を行い、原理的に可能なレベルまで干渉計雑音を低減する.
	ドラッグフリー	低雑音スラスタの動作確認と雑音 レベル評価.	試験マスと衛星の相対変動信号をミッションスラスタにフィードバックし, ドラッグフリー制御を実現.	ドラッグフリー制御によって, 衛星変動を太陽輻射圧雑音レベルより小さいレベル(10^{-9} m/Hz^{1/2})にまで抑圧する.

小型科学衛星シリーズ

JAXAの小型科学衛星シリーズの候補

標準衛星バス + 次期固体ロケットを利用して 最低 3機の小型科学衛星を打ち上げる計画

1号機 SPRINT-A/EXCEED (~2012年) UV望遠鏡による惑星観測

2号機 SPRINT-B/ERG (~2013年) 地球周辺の磁気圏観測

2008年9月 ミッション提案書募集 → 決定せず

2009年3月 2号機ミッション再募集

候補: ERG, DPF, FFAST など 5ミッション

2009年5月 ヒアリング審査 (ERG, DPF)

2009年8月 2号機ミッション ERGに決定

2010年 3号機ミッション選定(予定)

小型科学衛星1号機 SPRINT-A/EXCEED

Next-generation
Solid rocket booster (M-V FO)
Fig. by JAXA

時系列信号をフーリエ変換して規格化

$$\overline{x^2(t)} = \int_0^\infty G(f)df$$
平均変動パワー (パワースペクトル)²

パワースペクトル:変動の平均パワーに対する 各周波数成分の寄与を表す

- (例) 衛星の機械的変動要求値 1 x 10⁻⁹ m/Hz^{1/2}
 - □ 1Hz (1秒周期) の 変動成分のRMS変動 1 x 10⁻⁹ m

DPFシステム要求値

衛星への要求

観測帯域 (0.1-1 Hz) での 変動成分 (スペクトル) が重要

機械的振動

衛星変動 1 x 10⁻⁹ m/Hz^{1/2}

磁場

磁場変動 1 x 10⁻⁷ T/Hz^{1/2}

磁場勾配 3 x 10-6 T/m

温度

温度変動 1 x 10⁻³ K/Hz^{1/2}

磁場勾配途地場変動による 試験マス変動

無輻射揺らぎによる試験マス変動 (ハウジング内面での要求値)

衛星の機械的変動要求値 1 x 10⁻⁹ m/Hz^{1/2}

⇒ 機械変動を排除した衛星で実現可能

(静寂環境での 地面振動程度の安定度)

DPF構成:機械変動部は無い

モメンタムホイールは非搭載 リングレーザージャイロ → FOG に変更

試験マス周囲の温度変動要求値 1 x 10⁻³ K/Hz^{1/2}

⇒ 多重の輻射シールド 大きな熱浴, 熱伝導の良い材質

SWIMモジュール (SDS-1搭載) での温度変動実測結果

> サバイバルヒータでのON/OFF制御 SWIMでは温度制御はしていない

□ DPFの要求値を
 ほぼ満たす結果

(ADC雑音による測定限界)

Stochastic Background GWs

SWIMによる実証とDPF

DPFミッション部 信号処理・搭載機器のプロトタイプとしての役割

SpC2

中央処理計算機

デジタルボード 機器制御デジタルボード

AD/DAボード 信号取得,制御用アナログボード

センサモジュール 試験マスモジュール, センサ/アクチュエータ

SWIM – 動作実証が主な目的 信号処理・制御系の実証 センサ感度は重要視していない

SWIMによる実証とDPF

SDS-1搭載のSWIM (Space wire demonstration module)

DPF衛星のプロトタイプとしての役割

SpC2 小型衛星標準バス (通信・信号処理, 電源制御)

Snm DPFミッション部 (デジタル制御ボード, AD/DAコンバータ, センサモジュール)

SpaceCube2: Space-qualified Computer

CPU: HR5000

(64bit, 33MHz)

System Memory:

2MB Flash Memory

4MB Burst SRAM

4MB Asynch. SRAM

Data Recorder:

1GB SDRAM

1GB Flash Memory

SpW: 3ch

Size: 71 x 221 x 171

Weight: 1.9 kg

Power: 7W

SWIMμν : User Module

Processor test board
GW+Acc. sensor
FPGA board
DAC 16bit x 8 ch
ADC 16bit x 4 ch
→ 32 ch by MPX
Torsion Antenna x2
~47g test mass

Data Rate: 380kbps

Size: 124 x 224 x 174

Weight: 3.5 kg

Power: ~7W

SDS-1 Bus System

Power +28V RS422 for CMD/TLM GPS signal

Power ±15V, +5V SpW x2 for CMD/TLM

DPF技術開発

安定化レーザー光源

Yb:YAG (NPRO) 光源

ヨウ素飽和吸収による安定化制御

- → 安定度向上, パッケージ化
 - ⇒ 電気通信大学 情報通信研究機構 (NICT)

武者氏資料より

干渉計・ハウジング

プロトタイプの設計・製作

- → 基本性能の試験 地球重力場観測用センサの試作
 - □ 国立天文台 (NAOJ) 東京大学・地震研究所 スタンフォード大

新谷氏資料より

佐藤氏 資料より

DPF技術開発

姿勢制御・ドラッグフリー

構成 (構造・制御則)の検討 重力傾度安定による受動安定化 衛星にマスト構造を取り付ける ミッション部スラスタによるドラッグフリー制御

⇒ 東京大学·新領域創成科学研究科 宇宙航空研究開発機構 (JAXA)

スラスタ

既存技術のシステム化検討 推力雑音評価装置 (スラスタスタンド) 製作 スリット型FEEPの試作

⇒ 宇宙航空研究開発機構 (JAXA) 東海大学, 防衛大学

船木氏 資料より

DPF技術開発

信号処理·制御

SpaceWire/SpaceCube SDS-1/SWIM 1/23打上げ → 宇宙実証試験

東京大学, 京都大学
 宇宙航空研究開発機構 (JAXA)

写真: JAXA

SpaceCube2: Space-qualified Computer

CPU: HR5000

(64bit, 33MHz)

System Memory:

2MB Flash Memory

4MB Burst SRAM

4MB Asynch. SRAM

Data Recorder:

1GB SDRAM

1GB Flash Memory

SpW: 3ch

Size: 71 x 221 x 171

Weight: 1.9 kg

Power: 7W

SWIMμν : User Module

Processor test board
GW+Acc. sensor
FPGA board
DAC 16bit x 8 ch
ADC 16bit x 4 ch
→ 32 ch by MPX
Torsion Antenna x2
~47g test mass

Data Rate: 380kbps

Size: 124 x 224 x 174

Weight: 3.5 kg Power: ~7W

SWIMµv センサーモジュール

超小型重力波検出器

SpW 通信の宇宙実証のためのセンサーモジュール将来の宇宙重力波望遠鏡のための最初のステップ

TAM: Torsion Antenna Module with free-falling test mass (Size: 80mm cube, Weight: ~500g)

Test mass

~47g Aluminum, Surface polished Small magnets for position control

Reflective-type optical
displacement sensor
Separation to mass ~1mm
Sensitivity ~ 10⁻⁹ m/Hz^{1/2}
6 PSs to monitor mass motion

SWIMµv **轨道上実**証

SWIM In-orbit operation

Test mass controlled

Error signal → zero

Damped oscillation
(in pitch DoF)

Free oscillation
in x and y DoF

Signal injection
→ OL trans. Fn.

Operation: May 12, 2009

Downlink: ~ a week

DPFミッション機器構成

ミッション機器重量: 150kg

ミッション機器空間: 95 cm立方

ドラッグフリー ローカルセンサで相対変動検出 → スラスタにフィードバック

レーザー光源

Yb:YAGレーザー 出力 25mW ヨウ素飽和吸収による 周波数安定化

ファブリー・ペロー共振器

フィネス:100

基線長:30cm

テストマス: 質量 数kg

PDH法により信号取得・制御

DPF概要

DECIGOのための前哨衛星 小型科学衛星2号機 (~2013年) 候補としてミッション提案中

小型衛星 1 機 (95cm立方x2, 350kg) 地球周回軌道 高度 500km

DECIGOのための宇宙実証 科学技術の確立

宇宙・地球の観測 重力波の観測 地球重力場の観測

Comparison with LPF

LPF (LISA Pathfinder)

DPF (DECIGO Pathfinder)

Purpose

Demonstration for LISA

Demonstration for DECIGO

GW observation

Launch

2010

~2013

Weight

Dedicated launcher (Vega)

Dedicated launcher (M-V follow-on)

Test Mass

1,900 kg

350 kg SSO altitude 500km

Orbit

Halo orbit around L1

Drag-free attitude control

Drag-free attitude control

TBD x2

Laser source

Nd:YAG (1064nm)

Au-Pt alloy x2

Yb:YAG (1030nm)

Interferometer

Mach-Zehnder

Fabry-Perot

Sensitivity

 $3x10^{-14} \text{ m/s}^2/\text{Hz}^{1/2} (1\text{mHz})$

 $1x10^{-15} \text{ m/s}^2/\text{Hz}^{1/2} (0.1\text{Hz})$

DPFの観測対象

我々の銀河中心付近の ブラックホールに関連する現象

中間質量ブラックホール合体

h ~ 10⁻¹⁵ , f ~ 4 Hz Distance 10kpc, m = 10³ M_{sun} 観測時間(~数千秒)

BH準固有振動からの重力波

 $h \sim 10^{-15}$, $f \sim 0.3$ Hz Distance 1Mpc, $m = 10^5 M_{\text{sun}}$

DPF**の観測可能距離** ~ 銀河中心をカバー (SNR>5)

他の手段では観測が困難 → これまでにない観測結果となる

DPFによる重力波の観測

我々の銀河中心内の 中間質量ブラックホール連星合体 ブラックホール準固有振動 からの重力波が観測対象

観測の意義

他の手段では観測が困難な周波数 (0.1Hz)での観測 → これまでにない観測結果となる

運用中に、我々の銀河で、電磁波による別の観測から導かれた仮説を否定できる可能性、

(例)

M15等の幾つかの球状星団に
3000Msun程度のブラックホールがある。という説
→ その存在は確定していない。
これらのブラックホールが連星であったり。
1-10Msun程度のコンパクト天体が公転していれば、
DPFで観測できる可能性がある。

Globular clusters known to have black holes

Andromeda Galaxy (2.2 million light-years from Milky Way)

Credit: NASA, STScI

地球重力場観測

人工衛星の軌道から地球重力ポテンシャルを検知 2つの観測モード: GPS受信機 + 加速度計, 重力勾配計

GRACE, GOCEが稼働中 次世代計画 GRACE-FO GRACEと同等 (マイクロ波測距)

GRACE

 $L \sim 220$ km, $\Delta L \sim 5$ μ m

 $\rightarrow \Delta L/L \sim 2 \times 10^{-11}$

DPF

 $L \sim 0.3 m$, $\Delta L \sim 10^{-11} m$

 $\rightarrow \Delta L/L \sim 3 \times 10^{-11}$

GRACEとGRACE-FOの間の期間 2012-16年を埋める可能性 → 独自の成果, 国際貢献 CHAMP (2000. 7) 高度400km

静電型加速度計搭載 -> 非重カドラッグ(大気抵抗、

輻射圧等)を検知して補正・・・ジオイド精度数cm

GRACE (2002. 3) 高度500km 双子衛星 -> 軌道の空間微分検知

空間微分による高次(短波長)項の強調・・・精度数mm

GOCE (2009予定) 高度300km 重力偏差計->重力の空間微分、

高次項の強調

$$V = \frac{GM}{R} \sum_{l=0}^{\infty} \sum_{m=0}^{l} \left(\frac{R}{r}\right)^{l+1} \overline{P}_{lm}(\sin\phi)(\overline{C}_{lm}\cos(m\lambda) + \overline{S}_{lm}\sin(m\lambda))$$

重力ポテンシャルの球面調和関数展開

- •通常は軌道高度(r-R)程度の空間分解能
- ・空間微分を検知することにより高次項(I:大)が強調される

GRACEで検知された密度(=水分布)変化

衛星重力ミッション (1)

CHAMP (Challenging Mini-satellite Payload)

衛星に搭載したGPS受信機

→ 精密軌道決定, 地球重力場観測

打上げ日 2000.07.15 (設計寿命3年)

軌道 準極·円軌道(高度 470km, 傾斜角 83度)

開発機関 DLR, CNES (ACC), NASA (GPS receiver)

搭載機器

(1) ACC(STAR加速度計)

測定周波数 0.0001-0.1Hz

測定範囲 ±0.0001ms-2

测定分解能 加速度 <3×10-9 - 3×10-8 ms-2

角加速度 <1×10⁻⁷ - 5×10⁻⁷ rad·s⁻²

(2) GPS receiver 周波数 50Hz

(3) LRR(レーザー反射器) 口径 38.0mm×4枚

(4) OVM/FRD(スカラー/ベクトル磁力計)

測定範囲 ±65,000nT, 測定精度 <0.5nT

空間分解能 150m(along the orbit)

(5) DIDM(イオン測定器)

衛星寸法 4.3m(長さ)×0.75m(高さ)×1.62m(底部)

磁力計取付展開ブーム長 4m

重量 522kg (ペイロード重量 25kg)

消費電力 140W(ペイロード 45W)

参考:

GFZ Potsdam

http://op.gfz-potsdam.de/champ/

総覧 世界の地球観測衛星 -web版-

財団法人 リモート・センシング技術センター

http://www.restec.or.jp/databook/

衛星重力ミッション(2)

GRACE

(Gravity Recovery and Climate Experiment)
2機の衛星のタンデム飛行による衛星重力ミッション
GPS,マイクロ波リンクによる2衛星の相対距離変化測定
地球重力場、電離層・大気圏の垂直構造の観測

打上げ日

2002.03.17 (ミッション期間 5年)

轨道

太陽同期軌道 (高度 500km, 軌道傾斜角 89度)

2衛星間 220km

開発機関

NASA(米国), DLR(ドイツ)

観測機器

(1) KBR(Kバンド測距装置)

GPS受信機を組み合わせたマイクロ波リンク

2衛星間距離変化決定精度 1um/s

(2) ACC(相対距離変化補正用加速度計)

加速度分解能 1×10-10 ms-2

- (3) CSA(衛星方向感知恒星カメラ)
- (4) GPS Receiver

衛星航行データおよび地球周縁掩蔽による電離層・大気圏の 垂直構造データ取得

(5) LRR(レーザ反射器) 測距精度 <5mm

衛星形状·寸法 台形断面

3.122m(長さ)×0.72m(高さ)×1.642m(底部幅)

重量 432kg (ペイロード 40kg、燃料 34kg)

■■ 452kg (****| 40kg、 燃料 54kg /

消費電力 150-210W(ペイロード 75W、熱制御 20-50W)

開発費用 9,680万ドル(2機合計)

衛星重力ミッション(3)

GOCE

(Gravity field and steady-state Ocean Circulation Explorer)

地球の重力場を観測し、高精度かつ高空間分解能のグローバルモデルを定める。

打上げ日 2009.4 (ミッション期間 2-3年) 軌道 太陽同期軌道 (高度 295 km, 傾斜角 96.7度) 開発機関 ESA 観測機器

- (1) Gradiometer × 3 pairs 3軸サーボ制御加速時計 加速度計のペアベースライン長 0.5m 加速度計ノイズ < 1 × 10⁻¹² ms⁻² (5 mHz = 0.1 Hz)
- (2) GPS/GLONASS receiver (測地用)
- (3) Laser Retroreflector

必要電力 760W

重量 1,200kg (打上げ時)

GOCE (Courtesy of ESA)

DECIGOのための根幹技術実証

DPFで実証される技術

宇宙干渉計 による 精密計測

6x10⁻¹⁶ m/Hz^{1/2}

の変位感度 4x10⁻¹⁸ m/Hz^{1/2} の変位感度

10⁻¹⁴ N/Hz^{1/2} の外力雑音

10⁻¹⁷ N/Hz^{1/2} の外力雑音 DECIGOで必要 とされる主要技術

基線長1000kmのFP干渉計 宇宙における干渉計制御 試験マスに対する外乱抑圧 大型光学系の製作・制御

安定化レーザー の宇宙実証

0.5 Hz/Hz^{1/2} の周波数安定度 安定化レーザー光源による精密計測 ► 光源の周波数・強度安定化 長基線長を利用した安定化制御

ドラッグフリー制御の実現

衛星変動安定度 10⁻⁹ m/Hz^{1/2}

スラスタ雑音 10⁻⁷ N/Hz^{1/2} フォーメーションフライト 安定な軌道の実現 宇宙機間の距離制御 トラッグフリー制御 低雑音スラスタ

重力波観測

0.1 Hz帯の連続 観測とデータ解析 観測運用

時系列連続データの処理 データの解析 理論予測・他の観測との比較

宇宙干渉計による精密計測

背景

地上干渉計では豊富な実績 (10⁻¹⁹ m/Hz^{1/2}の変動測定)

宇宙では、FP干渉計は実現されていない (LPFでは MZ干渉計を使用 10⁻¹² m/Hz^{1/2} 程度の変位感度)

意義·波及効果

宇宙空間での精密計測技術 → 基礎物理学実験 無重力環境下での精密計測

宇宙・衛星内環境のより深い理解

DPFで 目指す成果

宇宙干渉計による精密計測

宇宙空間におけるファブリ・ペロー 干渉計の動作と精密計測の実証。 衛星内に試験マスを非接触で低 雑音保持する技術の実証。

FP干渉計による 6x10⁻¹⁶ m/Hz^{1/2} の変位感度 試験マスへの外乱除去技術の確立

安定化レーザー光源の実現

背景

広い応用範囲

 → 多くの地上研究(数 Hz/Hz^{1/2}の安定度)
 光周波数標準,原子・分子の精密分光,
 光通信,量子情報・コンピュータ
 重力波検出器での実績 (10⁻⁶ Hz/Hz^{1/2}の相対安定度)

宇宙では、高安定レーザーの実績

→ 外部基準による高安定化はない

意義·波及効果

宇宙空間での これまでに無い安定度の実現 さまざまな応用

地球環境観測 (ADM-Aeolus, GIFTS), 基礎物理実験, マイクロ波標準, 通信 (ACES), 惑星探査 (TPF-C), X線観測 (MAXIM), フォーメーションフライト (LISA, GRACE-follow-on)

DPFで **目指す成果**

安定化レーザー光源の実現

宇宙において高い周波数安定度を持つレーザー光源の実現、ヨウ素吸収線を用い、既存ミッションを超える安定度の実現を目指す.

0.5 Hz/Hz^{1/2} の周波数安定度 飽和吸収分光による安定化の宇宙実証

DECIGOの根幹技術 要求値を満たす安定度

ドラッグフリー制御の実現

背景

ナビゲーションシステムの開発

→ 1972年 TRAID-1 で初実証

精密基礎物理実験

→ 2004年 Gravity Probe-B

LPF (2010/11) L1点で実証

国内: 高高度気球からの

自由落下 (BOV) で実証

意義·波及効果

長時間安定な無重力環境 →宇宙環境利用の新しい可能性 基礎物理学実験, 材料工学

フォーメーションフライト のための基礎技術 (TPF-C, LISA, GRACE follow-on)

小型低雑音スラスタの宇宙実証

DPFで 目指す成果

ドラッグフリー制御の実現

重力傾度による受動安定化と能動制御を併用した、全自由度ドラッグフリー制御の実現.制御則と低雑音スラスタの宇宙実証を目指す.

重力傾度安定との併用による低雑音制御 太陽輻射圧雑音以下への 衛星変動安定化 10⁻⁹ m/Hz^{1/2}

DECIGOの根幹技術 要求値と同程度の安定度

DECIGOのための根幹技術実証

DPFで実証される技術

宇宙干渉計による精密計測

宇宙空間におけるファブリ・ベロー 干渉計の動作と精密計測の実証. 衛星内に試験マスを非接触で低 雑音保持する技術の実証.

6x10⁻¹⁶ m/Hz^{1/2}

の変位感度

4x10⁻¹⁸ m/Hz^{1/2} の変位感度

10⁻¹⁴ N/Hz^{1/2} の外力雑音

10⁻¹⁷ N/Hz^{1/2} の外力雑音

DECIGOで必要 とされる主要技術

基線長1000kmのFP干渉計 宇宙における干渉計制御 試験マスに対する外乱抑圧 大型光学系の製作・制御

安定化レーザー光源の実現

宇宙において高い周波数安定度 を持つレーザー光源の実現、ヨウ 素吸収線を用い、既存ミッション を超える安定度の実現を目指す。

0.5 Hz/Hz^{1/2} の周波数安定度 安定化レーザー光源による精密計測
・ 光源の周波数・強度安定化・ 長基線長を利用した安定化制御</ti>

ドラッグフリー制御の実現

重力傾度による受動安定化と能動 制御を併用した、全自由度ドラッグ フリー制御の実現、制御則と低雑 音スラスタの宇宙実証を目指す。

衛星変動安定度 10⁻⁹ m/Hz^{1/2}

スラスタ雑音 10⁻⁷ N/Hz^{1/2} フォーメーションフライト 安定な軌道の実現 宇宙機間の距離制御 ▶ ドラッグフリー制御 低雑音スラスタ

重力波観測

地上での観測が困難な周波 数帯(0.1Hz)での重力波の 観測. 銀河中心の中間質量 ブラックホールの合体や振動 現象を観測対象とする。

0.1 Hz帯の連続 観測とデータ解析

観測運用

時系列連続データの処理 データの解析 理論予測・他の観測との比較

DPFコスト検討

コスト: 上限値の制約

→ 信頼性確保とのトレードオフとして検討

構造系・電気系:メーカーの概算を参照 ミッション機器(光学系)

民生部品 ←→ 宇宙仕様部品 の間 (リスク) (コスト)

信頼性確保の考え方

基幹部(電源系,信号処理系,熱制御系) バス部に準じた冗長性・信頼性の確保 ミッション機器

機能冗長構成
重要度に応じて民生部品の使用を検討

DPFミッション部 経費見積もり	数量	費用[千円]			備考
98 - 47 - 45 - 54 - 54 - 54 - 54 - 54 - 54		1台	小計	計	2011 Part 1
ミッション部全体	1			995 000	(9.95 億円)
干渉計モジュール	1			140,000	
重力波観測用干渉計	1	50,000	50,000		
ハウジング	2	30,000	60,000		
レーザーセンサ	12	2,500	30,000		
主干渉計制御モジュール IFO CTRI	. 1			15,000	
ハウジング制御モジュール TM CTRL	. 1			15,000	
レーザーセンサ制御モジュール LS CTRL	1			15,000	
安定化レーザー光源モジュール	1			135,000	
レーザー光源	1	70,000	70,000		
周波数安定化光学系	1	50,000	50,000		
安定化·通信回路 Laser CTF	L 1	15,000	15,000		
ドラッグフリー	1			95,000	
スラスタヘッド	16	5,000	80,000		
スラスタ制御モジュール Thrust CTF	₹L 1	15,000	15,000		
信号処理モジュール	1			110,000	
中央処理計算機 SpC	1	20,000	20,000		
ユニバーサルSpWボード USpWB	6	15,000	90,000		
電源・熱制御モジュール PSU, Heat	er 1			20,000	
電源制御装置	1	10,000	10,000		
温度制御装置	1	10,000	10,000		
ミッション部構体	1			50,000	以上のミッション部本体部 5.95 億円
搭載機器試験経費	2-			50,000	
総合試験経費				70,000	
射場作業・打ち上げ	1 -			80,000	
運用とデータ処理・解析	1 -			100,000	
マージン				100,000	マージン比率 0.10
With the tracking and a state of the second st	d State of D	Districtive.	COLUMN TO A LOSS OF THE LOSS O	NAME OF BRIDE OF	наруктирноступационную выпоступацион

	提案書見積もり	民生部品で構成	した場合			
	合計	Ĭ			合計	比率
干渉計モジュール	140,000				31,200	4.5
重力波観測用干渉計	50,000			11,000		4.5
		主干渉計	5,500			
		光学系	2,000			
		変調器類	1,000			
		光検出器類	2,500			
ハウジング	60,000	0.0000000000000000000000000000000000000		13,100		4.6
		試験マスモジュール	4,100			
		構造体	1,100			
		センサ・アクチュエータ	900			
		モータ類	7,000			
レーザーセンサ	30,000	(A) 000(000)		7,100		4.2
		光源	500			
		干渉計	3,000			
		光学系	3,600			
安定化レーザー光源	135,000				15,000	9.0
レーザー光源	70,000		8,000	8,000		8.8
周波数安定化光学系	50,000			5,100		9.8
		周波数変換光学系	2,000			
		沃素セル	300			
		変調器類	1,500			
		光学部品	1,300			
光源制御系	15,000			1,900		7.9
		ドライバ回路	800			
		制御回路	1,100			
	-			1	単位: 千円	

DPFで期待できる成果

重力波: 直接検出されたことがない

DPFでは, 我々の銀河中心付近の ブラックホールに関連する現象 を観測可能

KAGAYA

検出できれば、ノーベル賞は間違いない

DPFの意義

今回の内容 →「DPF単体での科学的成果」が中心 しかし、DPFの意義は、単体だけの意義に限られない

科学の目標:真理を知ること 我々の成り立ち、宇宙の始まり

宇宙開発の目標:人類のフロンティア・夢人類の可能性を広げる

- → DECIGO: 宇宙の始まりに最も肉薄する可能性を持つ DPFはその重要なステップ
- → DPFは、宇宙環境利用の新しい可能性を切り拓く

日本物理学会声明

宇宙基本法施行に関する声明

2008年12月8日

- 1 自由な発想に基づいた意思決定
- 2 情報公開と透明性の確保
- 3 長期的視野に立った運営
- 4 宇宙活動の先導役としての宇宙物理学の推進
- 5 学問の府としての推進体制の整備・強化

3 長期的視野に立った運営

ニュートンによる人工衛星の原理の発見から実際に人工衛星が打ち上げられるまで、実に 250 年以上を要したように、物理学の基礎研究が現実的な応用成果として結実するまでには長い年月が必要です。宇宙物理学においても、いたずらに短期的な研究成果を求めるのではなく、人材育成にも十分配慮した、研究者の立案に基づく長期計画の下で推進されることを要望します。

球状星団のブラックホール

中心付近の星の速度分布の観測

Core velocity dispersions for 25 Galactic and 10 old Magellanic globular clusters? Pierre Dubath et al.,

Astron. Astrophys. 324, 505-522 (1997)

Obs No. (1)	NGC No. (2)	$V_r \ (\text{km s}^{-1})$ (3)	$\frac{\sigma_{\text{CCF}}}{(\text{km s}^{-1})}$	D (%) (5)	S/N (6)	(km s^{-1}) (7)	$\binom{\sigma_{\text{ref}}}{(\text{km s}^{-1})}$	$\sigma_p^{obs}(\text{core})$ (km s^{-1}) (9)	stat err (km s ⁻¹) (10)	$\sigma_p(\text{core})$ (km s^{-1}) (11)
1	104	-19.4±1.6	11.8±0.2	0.110	13.0	0.12	7.2±0.15	$9.3^{+0.4}_{-0.4}$	+4.8: -2.6	10.0 +4.8
2	"	-19.9 ± 1.6	11.5 ± 0.2	0.107	13.0	0.12	6.8 ± 0.10	$9.3^{+0.3}_{-0.3}$		
3	362	223.3 ± 1.6	8.9 ± 0.1	0.171	14.0	0.07	6.8 ± 0.10	$5.7^{+0.3}_{-0.3}$	+3.0: -1.6	6.2^{+3}_{-1}
4	1851	320.3 ± 0.8	13.8 ± 0.2	0.071	59.8	0.04	9.0 ± 0.20	$10.5^{+0.4}_{-0.5}$	+2.5 -1.7	11.3^{+2}_{-1}
5	1904	200.6 ± 0.9	9.7 ± 0.3	0.050	15.4	0.19	9.0 ± 0.20	$3.6^{+1.1}_{-1.6}$	+1.9: -1.0	3.9^{+2}_{-1}
6	5272	-146.3 ± 1.6	8.1 ± 0.3	0.112	5.0	0.30	6.8 ± 0.10	$4.4^{+0.7}_{-0.8}$	+2.3:	4.8^{+2}_{-1}
7	5286	57.2 ± 1.7	10.8 ± 0.7	0.050	5.0	0.67	7.2 ± 0.15	$8.0^{+1.0}_{-1.1}$	+4.2: -2.2	$8.6^{+4.3}_{-2.3}$
8	5694	-142.7 ± 1.7	$8.8 {\pm} 0.5$	0.053	6.4	0.49	6.8 ± 0.10	$5.6^{+0.9}_{-1.0}$	+1.3 -1.3	6.1^{+1}_{-1}
9	5824	-26.0 ± 1.6	12.6 ± 0.3	0.037	16.0	0.28	6.8 ± 0.10	$10.6^{+0.4}_{-0.4}$	+1.6 -1.6	11.1^{+1}_{-1}
10	5904	54.7±1.6	9.1 ± 0.3	0.084	6.0	0.33	6.8 ± 0.10	$6.0^{+0.6}_{-0.7}$	+3.1:	6.5^{+3}_{-1}
11	5946	129.1 ± 1.9	8.1 ± 1.1	0.101	1.5	1.10	7.2 ± 0.15	$3.7^{+2.2}_{-2.7}$	+1.9: -1.0	4.0^{+2}_{-2}
12	6093	7.8 ± 1.7	15.0 ± 0.5	0.037	10.0	0.45	6.8 ± 0.10	$13.4^{+0.6}_{-0.6}$	+7.0: -3.8	14.5^{+7}_{-3}
13	6256	-104.6 ± 3.1	9.5 ± 2.6	0.081	0.8	2.57	6.8 ± 0.10	$6.6^{+3.4}_{-6.0}$	+3.4:	
14	6266	-71.8 ± 1.6	16.0 ± 0.3	0.067	10.0	0.25	7.2 ± 0.15	$14.3^{+0.4}_{-0.4}$	+7.4: -4.0	15.4^{+7}_{-4}
15	6284	27.5 ± 1.7	9.3 ± 0.4	0.134	3.0	0.42	6.8 ± 0.10	$6.3^{+0.7}_{-0.8}$	+3.3:	6.8^{+3}_{-2}
16	6293	-147.9 ± 1.8	10.5 ± 0.8	0.037	5.5	0.82	7.2 ± 0.15	$7.6^{+1.2}_{-1.4}$	+4.0: -2.1	8.2^{+4}_{-2}
17	6325	31.0 ± 1.8	9.0 ± 0.8	0.157	1.4	0.76	6.8 ± 0.10	$5.9^{+1.2}_{-1.4}$	+3.1:	6.4^{+3}_{-2}
18	6342	118.0 ± 1.6	8.3 ± 0.3	0.172	3.2	0.30	6.8 ± 0.10	$4.8^{+0.7}_{-0.7}$	+2.5: -1.3	5.2^{+2}_{-1}
19	6397	15.1 ± 1.6	7.5 ± 0.3	0.045	13.0	0.28	7.2 ± 0.15	$2.1^{+1.3}_{-2.1}$	+1.1:	
20		15.0 ± 1.6	7.4 ± 0.4	0.050	10.0	0.33	7.2 ± 0.15	$1.7^{+1.5}_{-1.7}$		
21	6441	14.6 ± 1.6	19.3 ± 0.2	0.098	12.0	0.14	6.8 ± 0.10	$18.1^{+0.2}_{-0.2}$	+9.4: -5.1	19.5 +9.
22	6522	-10.3 ± 1.6	9.6 ± 0.3	0.133	4.3	0.29	6.8 ± 0.10	$6.8^{+0.5}_{-0.6}$	+3.5:	7.3^{+3}_{-2}
23	6558	-198.8 ± 1.6	7.5 ± 0.2	0.168	5.6	0.18	6.8 ± 0.10	3.2 +0.6	+1.7:	3.5^{+1}_{-1}
24	6681	223.4±1.6	11.5 ± 0.3	0.092	7.4	0.24	6.8 ± 0.10	$9.3^{+0.4}_{-0.4}$	+4.8: -2.6	10.0^{+4}_{-2}
25	6752	-32.0 ± 1.6	8.5 ± 0.2	0.082	21.0	0.10	7.2 ± 0.15	$4.5^{+0.5}_{-0.6}$	+2.3: -1.3	4.9^{+2}_{-1}
26	7078	-111.3 ± 1.6	15.6 ± 0.2	0.015	54.0	0.21	6.8 ± 0.10	$14.0^{+0.3}_{-0.3}$	+5.0 -3.0	15.1^{+5}_{-3}
27	7099	-180.7 ± 1.8	8.2 ± 0.8	0.022	11.0	0.83	6.8 ± 0.10	$4.6^{+1.5}_{-2.0}$	+2.8: -1.5	5.8^{+2}_{-1}
28	"	-181.1 ± 1.8	8.6 ± 0.9	0.020	11.0	0.91	6.8 ± 0.10	$5.3^{+1.5}_{-1.9}$		
29	"	-183.6 ± 2.2	8.9 ± 1.5	0.017	8.0	1.47	6.8 ± 0.10	$5.7^{+2.2}_{-3.0}$		
30		-185.1 ± 1.7	8.9 ± 0.5	0.031	14.4	0.45	6.8 ± 0.10	$5.7^{+0.8}_{-0.9}$		
31	**	-182.9 ± 2.7	8.2±2.2	0.017	5.4	2.18	6.8±0.10	$4.6^{+3.3}_{-3.6}$		

中心付近の星の速度分布 と BH質量の関係

GEMINI AND HUBBLE SPACE TELESCOPE EVIDENCE FOR AN INTERMEDIATE-MASS BLACK HOLE IN ω CENTAURI Eva Noyola et al., ApJ 676 (2008) 1008Y1015

Fig. 9.— $M_{\bullet^+}\sigma_{\rm vel}$ relation for elliptical galaxies and bulges. The solid line is the relation in Tremaine et al. (2002). ω Cen lies on the low-mass extrapolation and suggests a similarity between it and the galaxies. Different types of systems such as star clusters and low-luminosity AGNs appear to populate the low-mass end of the diagram.

過去の重力波観測による成果

重力波の観測による成果の例

連星ブラックホール

2003年, 3C66Bが 5.4x10¹⁰ Msunの ブラックホール連星で, 5年後に合体する, と発表 Sudou et al., Science 300 1263 (2003).

Radio Galaxy 3C66B Radio/optical superposition

パルサータイミング法による観測データ

→ 期待される重力波信号は見つからず

3C66Bが連星ブラックホールで

あるという仮説は否定

Jenet et al., astro-ph/0310276.

ガンマ線バースト

2007年に観測されたGRB070201 (Konus-Wind, INTEGRAL, MESSENGER)

→ M31 (アンドロメダ) 銀河方向で発生 継続時間の短いガンマ線 バーストは、連星中性子星 の合体に起因していると 考えられている。

米国の地上重力波検出器LIGOが、

十分な感度で観測を行っていた。

→ データ解析の結果, 信号はなかった。 このShort GRBはM31で発生した 連星中性子星合体に起因するものではない, と結論付けられた。

Abbott et al, axiv:0711.1163.