phones brances with were brances with oversite and an with oversite and an with the residence with the residence of the second statement of the

Data conditioning and veto for TAMA burst analysis

Masaki Ando and Koji Ishidoshiro (Department of Physics, University of Tokyo)

and the TAMA Collaboration

Introduction (1)

- Veto analysis -

Veto analysis by monitor signals

GW detector is sensitive to external disturbances as well as real GWs

Reject fake events using monitor signals recorded together with the main output of the detector

Main output

Monitor signals

Data conditioning (Whitening, freq.-band selection, Line removal)

Burst-event extraction (Burst filter: excess-power filter)

Coincidence analysis

No Fake events **GW** candidates

Systematic survey of all monitor channels

Fake reduction even without understandings of noise mechanisms

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.)

Yes

Introduction (2)

- TAMA DT9 data -

TAMA data acquisition and analysis system

Used data in this work: TAMA DT9 (Dec. 2003 – Jan. 2004) 200 hours of data (HDAQ 8ch, MDAQ 64ch)

at the second second

Data Conditioning

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.)

Data conditioning (1)

- Quality of data from detectors -

Data conditioning

'ideal' data

(predictable behavior known statistics)

Stationary noise White noise

Real data from detectors

Non stationary behavior Drift of noise level Sudden excitations Frequency dependence Sensitivity degradation in high and low frequencies Line noises

Data conditioning (2)

- TAMA conditioning filter -

Data conditioning for TAMA burst analyses

Normalization of the data by averaged nose level → Remove time and frequency dependence Line removal Select frequency band to be analyzed

In addition ...

Calibration : Convert v(t) to h(t)**Resampling** : Data compression

Requirements

Small loss in signal power Keep GW waveform

Data conditioning (3)

- Data flow -

• Data conditioning by FFT-IFFT

Frequency selection, Whitening/Calibration, Resampling

Data conditioning (4)

- Results of conditioning -

Whitened data

Data conditioning (5)

- Calibrated spectrum -

Calibrated data

Power spectrum of conditioned time-series data and calibrated spectrum of original data

and the state of the state of the state of the state of the

Event extraction

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.)

۵، به بالاستان المانية المحتوية المحتوية المحتوية المحتوية بالمحتوية المحتوية ال

phillippine and phillippine and phillippine and phillippine

10

Event extraction (1)

- Excess power filter -

Burst event trigger

Excess-power filter

Evaluate power in given time-frequency windows

→ Extract non-stationary events

Data conditioning time-series data in a given frequency band

Threshold, Clustering → Burst events Free selection of time-frequency window

Previous works... Spectrogram → Averaged power

Time-frequency resolution were limited by FFT length

A Dia sina ta pang mang dan pang dia sina ta pang dan pang dia s

Veto analysis

the Charles of the state of the state of the Charles of the state of the state of the Charles of the Charles of the

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.)

professional program with the second product of th

Veto analysis (1)

- Concept -

Coincidence analysis

External disturbances tend to appear in some monitor signals

→ Reject fake events

Veto analysis (2)

- Parameter optimization -

Parameter optimization

Analysis parameters Time-frequency window Threshold Signals to be used for veto

Threshold for monitor signals: Accidental ~ 0.1%

Time-frequency window: Highest coincidence rate selected from 50 (18) time-frequency combinations

Playground data (~10%) are used for this optimization Accidental coincidence: estimated by 1-min.time-shifted data

Optimized to have... High fake-rejection efficiency Low accidental coincidence

Veto analysis (3)

- Signal selection -

Signal selection

Even with small accidental rejection prob. (~0.1%) for each, many (~100) monitor signals may lose large amount of data

Select signals to be used for veto

Intensive fake-rejection with some monitor signals with strong correlations with the main signal

Re-optimize the threshold

Classify by the coincidence rate... <0.5 % → Do not use for veto 0.5 - 2 % → Use for veto > 2% → Intensive veto

with lower threshold: accidental ~ 0.5%

Selected signals

HDAQ: 3 signals Rec. Pow., L+ FB, Dark Pow.

MDAQ: 9 signals I- Err., I- FB, I+ Err., I+ FB, Bright Pow, Rec. Pow., EW Trans. Pow., SEIS center Z, Magnetic Field Y

Veto analysis (4)

- Intensity monitor -

• Example of coincident events

Intensity monitor in the power recycling cavity

(time series data after data conditioning)

Veto analysis (5)

- Seismic motion -

• Example of coincident events

Seismic monitor – center room vertical motion

(time series data after data conditioning)

Veto analysis (6)

- Magnetic field -

• Example of coincident events

Magnetic field – center room perpend. direction

(time series data after data conditioning)

Veto analysis (7)

- Veto results -

• Survival rate Veto results with 178 hours of data

Die generation and in the second s

Summary

We have to sell an a manipulation of the start of an animal sector of the sector of the sector of an

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.)

TRACE Drawest RTRACE DRACE DRAC

Summary

Summary

Systematic survey of monitor signals

Data conditioning filter Excess power burst filter Coincidence analysis

between main and monitor signals Optimization of analysis parameters

Analysis with TAMA DT9 data

200 hours data (10% are used as playground data) Correlations were found in 12 monitor signals (Intensity monitor, Seismic motion, Magnetic field)

Reject 92% (ŠNR>10), 98% (SNR>100) fakes with 4.4% accidental rejection probability

Current tasks

Hardware signal-injection test

→ Confirm the safety of veto

(already done for some of the monitor signals)

ويحتر فيتهم والمراجع والمتعاد فيترجع والمراجع المحاد والمتعاد والمحاد والمحاد والمحاد

End

ya dikana taga pang mangana panya dikana taga pang mangana panya dikana taga pang mangana panya

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.)

PRAVIS Drawes with the Drawes with

Burst-wave analysis (3)

- Data conditioning -

Data conditioning

Line removal

AC line, Violin mode peak, Calibration peak

Method FFT 72sec data Reject line freq. components Inverse FFT

Normalization Track the drift of noise level → Each spectrum is normalized by averaged noise spectrum Use 30min-averaged spectrum

• Time series data (after conditioning)

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.)