Design of the LCGT interferometer observation band

Masaki Ando (Department of Physics, Kyoto University)

On behalf of LCGT BW special working group

Abstract

Explain how the observation band of a LCGT interferometer (and the optical configuration) has been determined.

Scope

Interferometer observation band should be determined with investigations from various view point... Special working group

Science

Detection, Waveform, Astrophysical information

Calibration Sensitivity Stability Control scheme

Technical Feasibility Observation Target selection

Schedule, Cost

R&D

Project Strategy

Introduction **Candidate configurations Science outcomes Technical Feasibility Project Strategy** Conclusion

☐ Introduction **Candidate configurations Science outcomes Technical Feasibility Project Strategy** Conclusion

Interferometer setup

Based on LCGT original designs Arm length of 3km, Underground site of Kamioka Cryogenic mirror and suspension

High-power RSE interferometer with cryogenic mirrors

Resonant-Sideband Extraction Input carrier power : 75W DC readout

Main IFO mirror 20K, 30kg (Φ250mm, t150mm) Mech. Loss : 10⁻⁸ Opt. Absorption 20ppm/cm

Suspension Sapphire fiber 16K Mech. Loss : 2x10⁻⁸

RSE and cryogenics

RSE

High arm-cavity finesse
moderate Power recycling gain
→ Smaller optical loss and absorption in ITM substrate

> high power and cryogenics

Quantum and Classical noises

Quantum noise is dominant → Optimization of RSE configuration

Tuning of obs. band DC readout

Introduction

Science outcomes Technical Feasibility Project Strategy Conclusion

Tuning of observation band

Tune the resonance condition of Signal-Extraction Cavity Enhance IFO response, Reduce quantum noise at certain frequency band

Figure: K.Somiya

Optimal reflectivity of mirrors are different in Broadband RSE (BRSE) and Detuned RSE (DRSE) configurations

Variable RSE (VRSE) Change tuning without replacement of mirrors or changing in macroscopic position

Candidate configurations

Introduction **Candidate configurations** \Box Science outcomes **Technical Feasibility Project Strategy** Conclusion

Neutron-star binaries

Primary purpose of LCGT : Detection of GW → First target : Neutron-star binary inspirals

Observable range :

estimated from sensitivity curve

Galaxy number density :

 $ho = 1.2 \times 10^{-2}$ [Mpc⁻³] Event rate :

R. K. Kopparapu et.al., ApJ. 675 1459 (2008)

 $\mathcal{R} = 83.0^{+209.1}_{-66.1}$ [events/Myr] ^{V.K}

V. Kalogera et.al., ApJ, 601 L179 (2004)

	Observable range	Detection rate		
BRSE	114 Mpc	5.4 yr ⁻¹		
VRSE-B	112 Mpc	5.2 yr ⁻¹		
VRSE-D	123 Mpc	6.9 yr ⁻¹		
DRSE	132 Mpc	8.2 yr ⁻¹		

(SNR 8, Sky averaged)

Detection probability

Detection probability in one-year observation Success probability of the LCGT project

	IR	DP
BRSE	114 Mpc	99.6 %
VRSE-B	112 Mpc	99.4 %
VRSE-D	123 Mpc	99.9 %
DRSE	132 Mpc	99.9 %

Assume Poisson distribution

Errors in parameter estimation from observed waveform

	SNR	Arrival time	Mass parameters		
mass 1.4-1.4	ρ (@185Mpc)	δtc [msec]	δMc/Mc	δη/η	
BRSE	14.0	0.24	2.0x10 ⁻⁵	0.0042	
DRSE	19:1	0.73	5.2x10 ⁻⁵	0.010	

By H.Tagoshi

DRSE has better observable range, but poorer astrophysical information (factor ~2 difference)

Other Targets

Binary black hole

Obs. range : 570-670 Mpc Black hole Quasi-Normal mode Obs. range : 2-3 Gpc Core-collapse supernova Galactic events are detectable Out of band for DRSE ? Pulsars

25-38 pulsars within band Better sensitivity than spin-down upper limit Less targets for DRSE

Introduction **Candidate configurations Science outcomes** ☐> Technical Feasibility **Project Strategy** Conclusion

Technical feasibility

Mainly discuss the difference in technical difficulties though there will be many common problems...

 IFO Control (Signal extraction and SNR, Coupling noise by control)
 →No critical difference, though each configuration has advantages and disadvantages
 VRSE : realized by additional offset to the error signal

Requirement for mirror
 High arm-cavity finesse (1550) in BRSE, VRSE
 → lower optical loss is required (45ppm)
 Backup plan:
 Increase of input power, tuning of opt. Config.

Control scheme

5 length DoF should be controlled in RSE

- RF sidebands f1 and f2 f1 resonates in PR-SRC f2 resonates in PRC
- Ctrl-signals are obtained by
 - beat of carrier and SB (single demod)
 - beat of f1 and f2 (double demod)
 - beat of carrier and carrier (DC)

RC finesse depends on α_j

Signals are extracted with RF sidebands at two freq.

Figure: K.Somiya

SEM control and VRSE

VRSE is realized by adding an offset in SEM control signal

Tradeoff between signal strength and control range

Signal strength depends on the finesse of SRC + SEC

Control loop noise

- Original mirror motion is suppressed by control
- Mirror is shaken by shot noise
- Mirror's motion appears at L- port as <u>loop noise</u>

Figure: K.Somiya

Control loop noise

Control loop noise in VRSE Normal operation with VRSE-B, control offset for VRSE-D

Contribution of I- and Is loop noise does not degrade the sensitivity.

Introduction **Candidate configurations Science outcomes Technical Feasibility** Project Strategy Conclusion

Project Strategy

LCGT should contribute to the first detection → Earlier start of observation is desirable Should consider the total time of Commissioning term and Observation time required for the first detection.

 Observation time for the first detection Two month difference at most
 Commissioning term Many uncertainties Difficult to predict in precision of month In the best guess from current experiences... → No critical difference.
 Cost, Risks, Room for future upgrades → No critical difference.

Introduction **Candidate configurations Science outcomes Technical Feasibility Project Strategy**

Conclusion

 LCGT should be Variable RSE configuration (VRSE).
 In the first stage, it should be at the detuned operation point (VRSE-D).

In 4 candidate configurations, ...
•No critical difference in detection probabilities.
• No critical difference in technical feasibilities.

DRSE is tuned for detection of BNS event, but has less capabilities for the other targets.
VRSE-D is slightly better sensitivity for BNS than VRSE-B.
We have an option to be VRSE-B after first few detections, for wider scientific outcomes.

Conclusion

Summary of LCGT interferometer parameters

optical/mechanical parameters control parameters (tentative)

mass	30kg			
dimension	∳12.5x15cm			
susp fiber	φ1.8mmx40cm			
coating	9/18			
beam radius	3cm			
opt loss	45ppm/mirror			
ETM trans	5ppm			
finesse	1550			
power on BS	825W			
SRM trans	15%			
mass temp.	10K/20K			

f1 (PR-SRC)	11.25MHz (AM)			
f2 (PR)	45MHz (PM)			
Δ	.3.3m			
PRC	73m			
SRC	73m			
φ for DRSE	87 deg			
ζ for BRSE	122 deg			
ζ for DRSE	135 deg			

* f1/f2 are naively chosen; subject to change. * f1 SB may better be a single SB

By K.Somiya

Acknowledgements

Special Working Group members

Coordinator:	Seiji Kawamura (NAOJ)	
Chair:	Masaki Ando (Kyoto University)	
Members:	Nobuyuki Kanda (Osaka City University)	, Yoichi Aso (University

of Tokyo), Kentaro Somiya (Caltech), Osamu Miyakawa (ICRR), Hideyuki Tagoshi (Osaka University), Daisuke Tatsumi (NAOJ), Hirotaka Takahashi (Nagaoka University of Technology), Kazuhiro Hayama (AEI), Kazuhiro Agatsuma (NAOJ), Koji Arai (Caltech), Kiwamu Izumi (NAOJ), Yuji Miyamoto (Osaka City University), Shinji Miyoki (ICRR), Shigenori Moriwaki (University of Tokyo), Shigeo Nagano (NICT), Noriaki Ohmae (University of Tokyo), Shuichi Sato (Hosei University), Toshikazu Suzuki (KEK), Ryutaro Takahashi (NAOJ), Takashi Uchiyama (ICRR), Hiroaki Yamamoto (Caltech), Kazuhiro Yamamoto (AEI)

Special thanks to the external evaluation committee : Stan Whitcomb (Chair), Stefan Ballmer, Hartmut Grote, Benoit Mours, Peter Shawhan

Scientific outcomes

BRSE VRSE-B VRSE-D DRSE

Scientific outcomes						
Neutron-star binary						1.4Msolar neutron-star
Detection probability	[%]	99.6	99.4	99.9	99.9	At least one detection with one-year observation
Observation time required for the first event detection	[Month]	5.1	5.3	4.0	3.4	With 90% probability
Observable range	[Mpc]	114	112	123	132	SNR 8, sky average
		(259)	(255)	(281)	(299)	SNR 8, maximum direction
Detection rate	[/yr]	5.4	5.2	6.9	8.2	One-year observation
Parameter estimation		0	0	0	Δ	Factor of two difference
Error in arrival time	[msec]	0.254	0.220	0.255	1.08	200Mpc events
Fake reduction *		0	0	0	Δ	
Black-hole binary						10Msolar black-hole inspirals
Observable range Event rate	[Mpc] [/yr]	570	557 0.0	615 7-7	677	AT I III
Black-hole ringdown						
Observable range	[Gpc]	2.1	2.0	2.3	3	A CARLER
Mass range	[Msolar]	110-910	115-760	100-490	100-450	Events within 1 Gpc distance
Supernova						
Observation possibility		0	0	0	Δ ·	
Event rate	[/̈́yr]		0.01	- 0.05	X	Events in our Galaxy
Pulsar						With one-year observation
Number of observable p	ulsars	35	38	35	25	Reach spin-down upper limit
Crab upper limits	1e-27	8.5	8.5	8.3	5.9	60Hz
Vela upper limits	1e-27	6.9	6.0	9.3	1.0	22Hz
LMXB	1e-26	1.1	0.95	∴ 1 . 1	14	600Hz

LCGT BW special working group

Scope: To make recommendations on the interferometer optical configuration design of LCGT, and its observation band for gravitational waves.

Members: 22 members from LCGT collaborators

Reviewed by an external evaluation committee