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The Gravity Recovery and Climate Experiment (GRACE) has been providing

monthly estimates of the Earth’s time variable gravity field since its launch in March

2002. The GRACE gravity estimates are used to study temporal mass variations on

global and regional scales, which are largely caused by a redistribution of water mass in

the Earth system. The accuracy of the GRACE gravity fields are primarily limited by

the satellite-to-satellite range-rate measurement noise, accelerometer errors, and tem-

poral aliasing caused by un-modeled high-frequency variations in the gravity signal.

Full numerical simulations are performed for a GRACE Follow-On mission (GFO) to

determine if a future satellite gravity recovery mission with improved technologies will

provide better estimates of time-variable gravity, thus benefiting many areas of Earth

systems research.

Several GFO configurations are considered for this study. The first case considered

is a two-satellite collinear pair similar to GRACE. The best-case two-satellite mission

is equipped with an interferometric laser ranging system and a drag-free system in a

lower altitude orbit. The laser ranging system improves the satellite-to-satellite range-

rate measurement accuracy to ∼1 nm/s as compared to ∼1 micron/s for GRACE K-

band microwave ranging, and the drag-free system more accurately removes the non-

conservative forces acting on the satellites than the GRACE on-board accelerometers.

Two “hybrid” missions are also considered. One hybrid is the GRACE design where the

K-band ranging is replaced by the laser; and the other is a drag-free, low altitude scenario
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with K-band ranging. A comparison of simulated gravity estimates is an important

design tool in selecting the most important technologies to be considered for a future

mission. A method for local time variable gravity recovery through mass concentration

blocks (mascons) is used to form simulated gravity estimates for Greenland and the

Amazon region for three GFO configurations and GRACE.

Simulation results show that only modest improvement is realized for even the

best-case two-satellite mission due to temporal aliasing errors. These errors are caused

by high-frequency variations in the hydrology signal and imperfections in the atmo-

spheric, oceanographic, and tidal models which are used to remove unwanted signal.

The various sources of aliasing errors are investigated separately through a series of

numerical simulations, showing that the leading cause of the errors is dependent on the

considered region.

This work concludes that applying the updated technologies alone, will not im-

mediately advance the accuracy of the gravity estimates. If the scientific objectives

of a GFO require more accurate gravity estimates, then future work should focus on

improvements in the geophysical models, and ways in which the mission design or data

processing could reduce the effects of temporal aliasing.
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Chapter 1

Introduction

1.1 Background and Motivation

Temporal variations in the gravitational field are the result of a redistribution of

mass in the Earth system. Accurate determination of Earth’s time-varying gravitational

field is thus beneficial to many areas of scientific research. These areas include:

Hydrology - monitoring of global and local water mass variations in the atmo-
sphere and on the continents

Oceanography - determination of sea level change, ocean bottom pressure, ocean
heat storage, and ocean tides

Glaciology - monitoring of glacial and polar ice

Solid Earth Science - resolution of tectonic features and estimation of glacial
isostatic adjustment

Geodesy - improved accuracy of geoid and improved reference frame for deter-
mination of position coordinates

Orbit Determination - improved navigation and orbit determination for low
earth orbiting satellites

Orbiting satellites are perturbed by the irregularities in the Earth’s gravity field.

The Gravity Recovery and Climate Experiment (GRACE) satellite mission determines

the shape of Earth’s gravity field by accurately measuring these perturbations. This

dedicated gravity recovery mission has been successful in determining the Earth’s gravity
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field to a much improved level of accuracy at monthly intervals than was possible prior

to the launch of GRACE.

Prior to the GRACE mission the Earth’s gravity field was determined using

decades of satellite tracking data. With this method, it is not possible to determine

the gravity field with both high spatial and temporal resolution [Seeber , 2003]. Studies

showed that satellite tracking data could be used to estimate temporal variations in the

largest spherical harmonic terms. One study by Nerem et al. [2003], estimates monthly

values of the J2 and J3 coefficients with a decade of LAGEOS satellite laser ranging

data, and calculates the secular and seasonal variations of these terms. Several efforts

have been put forth in which satellite tracking data was optimally combined with surface

gravity measurements and altimetry data to solve for the gravity field to a higher spatial

resolution than is possible with only satellite data. These efforts sought to accurately

determine the mean gravity field and some seasonal variations. Due to insufficient data,

the temporal variations of the gravity field, which take place over shorter time intervals,

could not be measured.

The GRACE mission was designed to accurately determine the gravitational field

of the Earth in 30-day increments with a spatial resolution of 400 km to 40,000 km.

The mission, which launched in March 2002, consists of two identical satellites orbit-

ing at ∼480 km altitude at an inclination of ∼89◦. The two satellites are separated

by ∼220 km in the along-track direction. The K-band microwave ranging system ac-

curately provides the dual range and range-rate measurements between the satellites

while the Global Positioning System (GPS) receivers on each satellite allow for precise

orbit determination and time-tagging of the satellite-to-satellite range measurements.

Each GRACE satellite also carries a star tracker for attitude determination and a high

precision accelerometer which measures the sum of all non-conservative forces [Tapley
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et al., 2004b].

As described in the next section, the results from the GRACE mission have

allowed tremendous achievements in a variety of scientific disciplines. It is expected,

however, that a follow-on gravity recovery mission to GRACE, with some improvements,

could measure variations in the gravity field to an even greater spatial resolution, thus

furthering the scientific objectives of these missions. The primary focus of this work

is to investigate the improvements and benefits which would be made possible from a

follow-on gravity recovery mission to GRACE.

1.2 GRACE Results

Beginning in April 2002, GRACE data has been used to estimate the Earth’s

gravity field at monthly intervals. The released monthly gravity estimates are a set

of spherical harmonic coefficients to degree and order 120. These monthly solutions

contain valuable information of temporal variations in the gravity field which can be

used to study various geophysical phenomena. Prior to their release, several well-known

geophysical processes which cause temporal variations in the gravity field are modeled

and removed from the GRACE monthly estimates. The removed processes include the

solid Earth and oceanic tides, the pole-tide effects, atmospheric pressure, and non-tidal

oceanic mass variations [Tapley et al., 2004b]. The monthly gravity estimates from

GRACE, therefore, contain information of the unmodeled geophysical processes, which

consist of changes in continental water storage, and residual signal from the atmosphere,

ocean, and tides (due to imperfect modeling).

Given a set of spherical harmonics, the gravity field can be plotted as geoid

height or as equivalent water height (see Section 2.3). Several methods have been

developed to smooth the data in order to provide a more coherent picture of mass
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variation. These methods are motivated by the fact that the accuracy of the gravity

field solutions degrade as the spatial scale decreases. A commonly used approach is a

Gaussian averaging kernel, which was developed by Jekeli [1981], and is summarized by

Wahr et al. [1998]. For this technique the averaging radius is varied to observe changes

in the gravitational signal at different spatial scales. Localized averaging kernels can be

used to extract the mass variations in specific regional areas (see Section 2.5) [Swenson

and Wahr , 2002].

Several studies have been performed to assess the accuracy of the gravity field

estimates provided by the GRACE mission. The accuracy of the estimated gravity field

is affected by the spherical harmonic truncation degree or the selected smoothing radius

[Wahr et al., 2006, 2004]. Wahr et al. [2004] report water equivalent height accuracies

of 0.7 cm for a 1500 km smoothing radius, 1.0 cm for a 1000 km radius, and 1.4 cm for a

750 km radius for the annual signal. It is shown by Wahr et al. [2006] that the monthly

GRACE errors are also dependent on latitude. A global map of 1 σ uncertainties for

the August 2003 GRACE field shows that the uncertainties vary from 0.8 cm at high

latitudes to 2.8 cm at lower latitudes. This latitude dependence is due to the ground

coverage of the GRACE satellites.

In short, the knowledge of the time-varying gravitational signal as provided by

GRACE has enabled tremendous improvements in the understanding of the Earth sys-

tem. A brief summary of scientific uses for GRACE data is now given.

1.2.1 Hydrology

The hydrologic cycle is essential for life on Earth and knowledge of continental

water balance could have important socioeconomic impacts. On land, water is stored

in lakes, rivers, aquifers, or as snow, ice, soil moisture or vegetative water. Prior to the
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launch of GRACE the temporal and spatial variations of terrestrial water at global and

regional scales were poorly known [Rodell and Famiglietti , 1999]. The determination of

water changes over land was limited by ground-based techniques, which only provide

point estimates of water storage. Extensive modeling is then required to generate global

estimates of land water storage from the in situ hydrological measurements. With the

monthly GRACE gravity fields, global maps of continental water storage are available

and used to gain a new understanding of the components which make up the water

balance equation:

∂S

∂t
= P − ET − R, (1.1)

where S is land water storage, P is precipitation, ET is evapotranspiration, R is runoff,

and ∂t is the change in time. GRACE data can be used to directly estimate the land

water storage component. Estimates of the other components of Eq. (1.1) can be found

by combining the GRACE estimates of land water storage with estimates of the other

variables which are found using other techniques. Several examples of the hydrologic

applications of GRACE are given below.

Some of the earliest results of mass variability as measured by GRACE are pre-

sented by Tapley et al. [2004a]. GRACE data are used to compute global maps of the

sine (spring-fall) and cosine (winter-summer) annual variations in the gravity field and

are compared to the Global Land Data Assimilation System (GLDAS) [Rodell et al.,

2004b] hydrology model. The shape of the maps agree well but the GRACE estimates

have larger amplitudes. The authors suggest that the disagreement is likely caused by

the fact that GLDAS did not model deep groundwater, snow persistence, or variations

on Antarctica. More recently, Syed et al. [2008] shows good agreement between global

estimates of terrestrial water storage change from GRACE and GLDAS with a global
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Root Mean Square (RMS) error of ∼1 cm/month. Similarly, Swenson and Milly [2006]

use GRACE data to form global estimates of the amplitude and phase of the seasonal

land water storage signal and compare the results to land water storage estimates from

five different hydrology models. Though the global maps appear to be similar in shape,

the results at regional scales differ noticeably in amplitude and phase. The authors

conclude that the GRACE results reveal biases in the hydrology models at low latitudes

and hypothesize that the hydrology models poorly estimate the precipitation and river

water storage amounts.

GRACE data has been used by many researchers to obtain new estimates of re-

gional changes in terrestrial water or to validate local estimation techniques for a number

of river basins in the United States and around the world. Swenson et al. [2006] show

that good agreement exists between terrestrial water storage estimates from GRACE

and in situ hydrological observations from a network of observing sites in Illinois. Simi-

larly, Strassberg et al. [2007] show that GRACE water storage estimates agree well with

the sum of groundwater storage measurements and simulated soil moisture for the High

Plains Aquifer in the United States. Swenson et al. [2008b] combine GRACE data with

soil moisture data to generate estimates of variations in groundwater storage for the

region observed by the Oklahoma Mesonet. Crowley et al. [2006] use GRACE data to

form terrestrial water storage estimates for the Congo Basin in Africa, showing a sizable

seasonal signal and a long-term trend of mass loss. Niu et al. [2007] use GRACE data

to provide estimates of snow mass variations for large Arctic regions.

As previously described, GRACE data, which directly measures mass variation,

can be combined with models or other estimation techniques to provide estimates of

other variables in the water balance equation. Swenson and Wahr [2006a] combine

GRACE estimates of terrestrial water storage with basin discharge data to form regional
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estimates of P − ET . The P − ET estimates are computed for the Mississippi and the

Ohio-Tennessee river basins at monthly and seasonal time scales and show relatively

good agreement with hydrological models. The seasonal estimates of P − ET are then

combined with precipitation data to form seasonal estimates of evapotranspiration for

the river basins. The authors state that the GRACE results validate the hydrological

models and that the ability of GRACE to provide new estimates of evapotranspiration

is an important contribution to global hydrology. Similarly, evapotranspiration values

for the Orinoco, Amazon, Tocantins, Parana, Niger, Congo, Ganges, and Mekong river

basins are computed by Ramillien et al. [2005] and evapotranspiration values over

the Mississippi river basin are computed by Rodell et al. [2004a]. Syed et al. [2005]

combine GRACE estimates of land water storage with precipitable water and vapor flux

divergence data from the European Centre for Medium-Range Forecasts (ECMWF)

to compute estimates of total basin discharge for the Amazon and Mississippi river

basins. Differences exist between the GRACE basin discharge estimates and observed

streamflow which can be explained in part by unmonitored changes in groundwater.

1.2.2 Oceanography

GRACE has provided a wealth of new information regarding water mass varia-

tions in the ocean. This knowledge is of tremendous importance for several reasons.

First, variations in sea level is of primary concern for populations currently living near

the current sea level. The unique information provided by GRACE allows the scientific

community to determine more accurately what sources are contributing to changes in

the sea level. Also, when combined with altimetry data, GRACE can provide calcula-

tions of ocean heat storage. The large amount of energy stored in the oceans as heat

can have tremendous impacts on climate and can act as a source of energy for severe
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storms. A better knowledge of ocean heat storage allows for improved prediction of cli-

mate change, long-range weather forecasting, and hurricane strength prediction [Jayne

et al., 2003].

There are two components to sea level change. Steric sea level change is caused

by variations in the water density as a result of changes in temperature or salinity.

The eustatic portion of sea level change, which is measured by GRACE, represents

the exchange of water mass between the ocean and other reservoirs. Eustatic sea level

change is from water mass changes in glacial and polar ice, terrestrial water, and the

atmosphere. Altimeters are sensitive to total sea level change which is the sum of the

steric and eustatic components. GRACE data can be combined with altimeter data to

differentiate between the two sources of sea level change.

A variable of primary interest in oceanography is the global mean sea level

(GMSL) and its changes. Long-term sea level rise is the result of ocean warming,

melting of glaciers and polar ice, and glacial isostatic adjustment (GIA) [Chen et al.,

2005]. It is expected that GRACE will be very useful in separating the steric and eu-

static portions of interannual sea level change, but a longer time series of data will be

required before any valid conclusions can be made [Cazenave and Nerem, 2004]. Sea

level changes which occur at time periods of less than a few days are the result of tides,

evaporation, and precipitation and for the most part are not recovered by GRACE due

to limitations in the temporal sampling. GRACE data has proved useful for estimating

seasonal variations in GMSL.

In the work of Chambers et al. [2004], the eustatic estimates of the GMSL from

GRACE are compared to the estimates calculated from the TOPEX/Poseidon (T/P)

and Jason-1 altimeter data corrected for steric variations. The results show excellent

agreement, with a difference in the amplitude of the signal of 0.1 mm and a phase dif-
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ference of only 12 degrees. The authors state that this work validates that GRACE is

recovering mass variations in the ocean and suggest that the disagreements could be

real interannual variations measured by GRACE. Chen at al. [2005] compute variations

in the eustatic component of GMSL with GRACE data, the T/P and Jason-1 altimeter

data corrected for steric variations, and GLDAS combined with National Center for En-

vironmental Prediction (NCEP) estimates of water vapor. The results also show very

good agreement between the independent methods of estimating the eustatic GMSL.

Chambers et al. 2006a use GRACE data to form monthly maps of the eustatic com-

ponent of sea level and shows good spatial agreement with steric-corrected altimetry

estimates.

Chambers [2006b] combines GRACE and Jason-1 altimeter data to form estimates

of the steric component of sea level variation. The resulting estimates of steric sea level

(SSL) are compared to the World Ocean Atlas 2001 (WOA01) model and show that

with the use of GRACE and altimetry data, the estimates of the seasonal SSL signal

improves for ∼ 75% of the ocean. Estimates of SSL, when combined with salinity data,

can be used to form accurate estimates of ocean heat content [Jayne et al., 2003].

GRACE data has also proved useful in estimating ocean bottom pressure vari-

ations, which are the sum of oceanic and atmospheric variations. Ponte et al. [2007]

estimate the seasonal cycle of ocean bottom pressure with GRACE and suggest that

constraining the ECCO (Estimating the Circulation and Climate of the Ocean) general

circulation model with information from GRACE could improve the model. Bingham

and Hughes [2006] use GRACE data to compute seasonal variations in ocean bottom

pressure in the North Pacific.

For the majority of GRACE applications, the ocean, Earth, and atmospheric tides

are considered a source of error for the gravity estimates, as these signals are removed
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prior to the release of the monthly solutions. However, a few studies have shown that

GRACE data can be used to improve tide models or to verify improvements in the

tide models. In the work of Han et al. [2005] GRACE data are used to estimate the

M2 and S2 tides underneath the Filchner-Ronne and Larsen ice shelves in Antarctica.

The results agree well with the FES2004 (Finite Element Solution) and CATS02.01

(Circum-Antarctic Tidal Simulation) tide models and the authors conclude that GRACE

can provide useful observations of ocean tides. This is an important contribution to

oceanography as the considered area has few tide gauges. More recently, Han et al.

[2007] use GRACE data to estimate the M2, S2, and, O1 ocean tides in the Antarctic

showing good qualitative agreement to sparse in situ tide measurements. Desai and

Yuan [2006] argue that improvements in tide models will result in reduced residuals

for the K-band range-rate measurements, concluding that GRACE data can be used to

determine the relative accuracies between tide models.

A final benefit of GRACE on oceanography is the improved mean dynamic ocean

topography (MDT) estimates which have resulted from a much improved knowledge

of the static geoid. In addition to providing monthly estimates of the gravity field,

GRACE data has also been used to form much improved estimates of the static geoid

than was previously possible. Improved solutions of the static gravity field have been

determined using GRACE data alone, or in some cases as a combination of the GRACE

data, altimetry data, and ground-based gravity measurements. A more accurate static

geoid allows for more accurate calculation of the MDT, which is defined as the mean

height of the sea surface above the geoid. These variations from the geoid are caused

by wind and buoyancy forcing [Bingham and Haines, 2006]. Therefore, knowledge of

the MDT can be used to study ocean circulation which is an integral part of climate

studies. The Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mis-
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sion, which was launched in March 2009, will measure the static geoid more accurately

than GRACE [Bingham and Haines, 2006] and thus further improve the accuracy of the

MDT estimates. Results describing the improved estimation of the MDT using GRACE

data are presented by [Bingham and Haines, 2006; Birol et al., 2005; Castruccio et al.,

2006; Jayne, 2006; Tapley et al., 2003].

1.2.3 Glaciology

GRACE has been used to monitor changes in glacial and polar ice, which is a

significant part of the global water mass balance equation described by Eq. (1.1). So

far, the majority of studies have focused on measuring mass changes over Greenland and

Antarctica, since the gravity signals are large, and variations in the ice mass balance of

these ice sheets will result in important changes in the global mean sea level. GRACE

presents a unique ability to regularly measure these changes at large spatial scales and

to determine their effect on sea level change. Other techniques of measuring ice mass

variations in Greenland and Antarctica include airborne laser altimetry measurements

and satellite radar interferometry [Ramillien et al., 2006]. Large uncertainties exist with

these techniques due to insufficient spatial and temporal coverage and their inability to

distinguish between ice mass loss and changes in snowpack [Chen et al., 2006b].

The GRACE estimates of secular changes in ice mass balance over Greenland and

Antarctica are contaminated by the gravity signal from glacial isostatic adjustment,

which is the viscoelastic response of the solid Earth to the melting of glaciers over

the past few thousand years. It is not possible to distinguish the difference between

secular ice mass changes and GIA using GRACE data alone [Velicogna and Wahr ,

2005]. However, changes in the rate of mass loss are measurable since the rate of mass

change caused by GIA is constant [Chen et al., 2006b]. Further discussion of GIA is
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presented in Section 1.2.4.

Velicogna et al. [2005] calculate the seasonal signal for Greenland with more than

two years of GRACE data. Their estimates compare well to mass change estimates

calculated from ERA40 (40-year ECMWF Re-Analysis), concluding that the differences

could be real signal recovered by GRACE. The authors suggest that this signal consists

of ice discharge, blowing-snow sublimation, and delayed runoff as well as errors in the

ERA40 model. Luthcke et al. [2006] also observe a strong seasonal signal in the Green-

land ice mass. Their work shows that the drainage systems with an elevation below

2000 m have a strong seasonal signal while the higher elevation areas do not.

Of primary importance are the interannual variations in the Greenland ice mass

balance, as this is an indicator of climate change and will likely be a major contributor to

long-term changes in global mean sea level. A number of research groups have calculated

the rate of ice mass loss for Greenland using a variety of methods and different time

periods of the GRACE data [Chen et al., 2006b; Luthcke et al., 2006; Ramillien et al.,

2006; Velicogna and Wahr , 2006a; Wouters et al., 2008]. While their calculations of the

rate of mass loss differ, all authors do agree that GRACE results conclusively show a

sizable amount of ice mass loss over the time period of the mission. Velicogna et al.

[2006a] and Chen et al. [2006b] both show an acceleration in the Greenland mass loss

in 2004. Wouters et al. [2008] also observe an acceleration in mass loss over the time

period February 2003 to January 2008. Luthcke et al. [2006] show that areas above 2000

m have had an increase in ice mass, while the lower elevations experienced large mass

losses over recent years. According to [Chen et al., 2006b], melting rates as calculated

by GRACE data show good agreement when compared to estimates from satellite radar

interferometry data.

Several investigations have used GRACE data to calculate estimates of interan-
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nual variations in the Antarctic ice mass [Chen et al., 2006a; Ramillien et al., 2006;

Velicogna and Wahr , 2006b]. Both Chen et al. [2006a] and Ramillien et al. [2006]

observe mass losses in Western Antarctica and an accumulation of mass in Eastern

Antartica with Ramillien et al. [2006] claiming good agreement with mass variations

calculated using satellite radar altimetery. Velicogna and Wahr [2006b] calculate much

larger mass losses in Western Antartica than the other reports and estimate a mass

balance in the Eastern portion. These discrepancies are likely caused by large errors in

the GIA models [Ramillien et al., 2006].

Chen et al. [2007] use GRACE data to show that the Patagonia Icefield of South

America experienced large ice mass losses over the time period April 2002 to December

2006. The determined rate of ice mass loss agrees well with previously determined values

from topographic and cartographic data.

Using a local mascon technique Luthcke et al. [2008] estimate mass changes in the

Gulf of Alaska from April 2003 to September 2007 with a 10-day sampling. The results

show a strong annual signal as well as noticeable mass losses which agree well with

air-borne laser-altimeter and Shuttle Radar Topography Mission (SRTM) studies. The

mascon solutions clearly show the affects of the record high temperatures of summer

2004 and the large snowfall of winter 2007.

1.2.4 Solid Earth Science

GRACE data has proved useful for a variety of solid earth science applications,

including the estimation of glacial isostatic adjustment, determination of crustal dis-

placements, and the measurement of coseismic and postseismic deformation caused by

the 2004 Sumatra-Andaman earthquake.

Glacial isostatic adjustment is the response of the Earth to the large-scale deglacia-
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tion which ended about 10,000 years ago and the redistribution of solid earth mass due

to GIA is contained in the GRACE data. Measurements of GIA can be used to infer

the viscosities of the upper and lower mantle as well as the lithospheric thickness. Sim-

ulations suggest that GRACE mission data will provide improved estimates of these

parameters [Velicogna and Wahr , 2002]. Chen et al. [2006b] state that the GRACE

data set will need to be extended until 2010 in order to effectively separate the ice

mass change from the GIA signal. At that point, improved estimates of glacial mass

change and the mentioned solid Earth parameters should be realized. A recent study by

Barletta et al. [2009] does use GRACE data to estimate GIA by removing the known

present-day linear mass change signals from the GRACE gravity estimates. Values of

the upper and lower mantle viscosities are estimated as a part of the study.

In the work of van Dam et al. [2007] predictions of vertical crustal displacements

over Europe as calculated by GRACE are compared to measurements obtained using

a network of GPS sites. The authors conclude that GRACE provides more accurate

estimates of annual variations in crustal displacement than is currently possible with

GPS. Shin et al. [2009] use the GRACE combined gravity model GGM02C, which is

formed with a combination of GRACE, altimeter, and ground gravity measurements,

to estimate the three-dimensional Moho fold structure of the Tibetan region.

A very interesting application of GRACE data has been in the study of the great

2004 Sumatra-Andaman earthquake. Using GRACE data, Han et al. [2008] observe

the coseismic displacements and the postseismic deformation caused by the massive

earthquake. Steady state and transient viscosities of the asthenosphere are estimated

from the results.
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1.2.5 Geodesy

GRACE has also benefitted the geodetic sciences community with some interest-

ing contributions. Nastula et al. [2007] use the degree-2, order-1 harmonics from the

GRACE estimates to compute the polar motion excitation functions χ1 and χ2 and

show that the GRACE solutions agree well with polar motion as determined by direct

observation and modeling of geophysical fluids. Swenson et al. [2008a] combine GRACE

data with ocean model data to form new estimates of variations in the Earth geocenter.

1.2.6 Errors

There are two categories of error sources which limit the accuracy of the GRACE

gravity estimates. These are instrument measurement errors and modeling errors. In-

strument errors include errors in the K-band microwave ranging device, the accelerom-

eters, and the GPS measurements. These error sources affect the gravity estimates at

different spatial wavelengths [Kim, 2000]. Modeling errors are caused by imperfections

in the geophysical models used to remove unwanted signal from the GRACE gravity

estimates. These include errors in the atmospheric models, oceanic models, and the

solid Earth and ocean tide models. Any imperfections in these models will appear as

a gravitational signal in the estimates. Studies have also shown that temporal aliasing

is a major contributor to the GRACE errors [Han et al., 2004; Ray and Luthcke, 2006;

Thompson et al., 2004]. Aliasing errors are the result of short-period variations in the

Earth’s gravity field which alias into the monthly mean estimates due to limitations

in the temporal sampling of the GRACE satellites. These short-period variations are

present in the hydrological, atmospheric, tidal, and non-tidal oceanographic signals.

The main thrust of this work is an investigation into how a reduction in the
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instrument errors, specifically the ranging measurement errors and the error associated

with the on-board accelerometers, would improve the gravity estimates from a GRACE-

like mission. It is important to note that scientists are constantly working to improve the

geophysical models discussed above. Much work has also been done to develop methods

which minimize the affects of these error sources on the GRACE gravity estimates.

As this work progresses, it will only enhance the ability of GRACE, and a GRACE

Follow-On mission to more accurately detect the variations in the gravitational field.

1.3 Previous Investigation into a GRACE Follow-On Mission

A GRACE Follow-On (GFO) mission would have tremendous benefits for the

scientific community. In addition to extending the time series of data, currently being

provided by GRACE, a follow-on mission may be able to determine the Earth’s gravity

field with an improved spatial and/or temporal resolution. The desire for an improved

spatial resolution would likely drive the design of a follow-on mission. Some work

has already been done contributing to the design of a potential future satellite gravity

recovery mission and an overview is given here.

Some suggestions for a GFO mission were made by Bender et al. [2003]. Of pri-

mary interest to this investigation is the possible use of laser heterodyne measurements

between the two orbiting spacecraft, as opposed to the K-band microwave ranging sys-

tem employed by GRACE. Since a laser ranging device could measure the range and

range-rate between the spacecraft with better accuracy, a GFO mission equipped with

such a device should recover the Earth’s gravity field with a greater spatial resolution.

Bender et al. [2003] also discuss the possibility of flying a GFO mission with a

drag-free system. This is accomplished by isolating a proof mass within the satellite

from the surrounding environment, making it unsusceptible to the non-conservative
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forces acting on the satellite [Seeber , 2003]. A micro-thruster system would then be

used to maintain the position of the satellite with respect to the proof mass so that the

satellite orbit would not be affected by drag. This would eliminate the need to include

the accelerometer data in the data processing which should improve the accuracy of the

gravity estimates. A detailed investigation into the feasibility of a drag-free follow-on

mission is performed by Marchetti et al. [2008]. The work shows that assuming 87 kg

of propellant mass, a GRACE follow-on mission would have a lifetime of 0.76 years for

an orbital altitude of 160 km and 2.27 years for an altitude of 225 km. To extend the

225 km altitude case to 5 years would require approximately 170 kg.

A GRACE follow-on mission consisting of a four satellite cartwheel formation was

first proposed by Bender et al. [2003]. In a study by Wiese et al. [2008], four different

GRACE follow-on satellite configurations are considered: a two-satellite collinear pair

similar to GRACE, a four-satellite configuration with two collinear pairs, a two-satellite

cartwheel formation, and a four-satellite cartwheel formation. The results show that

for a case where only the satellite-to-satellite ranging noise is considered, the cartwheel

cases perform about an order of magnitude better than the collinear cases and drastically

reduce the striping in the spatial error maps. When errors due to the mismodelling of

the time-variable signal in the atmosphere and oceans is included, the cartwheel orbits

actually perform worse than the collinear cases at high spherical harmonic degrees.

It is of course advantageous to fly a follow-on mission in as low an altitude as

possible since the gravity signal attenuates with distance. The limitation to the altitude

is placed by the non-conservative forces which are greater at lower altitudes and the

amount of thrusting required to maintain the desired orbit of the spacecraft in the

presence of these forces.

This work is in conjunction with the development of an interferometric laser
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ranging system by Ball Aerospace & Technologies Corp., Boulder, CO. This project,

which was completed in December 2006, resulted in the successful development of a laser

ranging device for use on a GFO mission. Details regarding this project are presented

in [Dehne et al., 2009; Nerem et al., 2006; Pierce et al., 2008]. In summary, the new

instrument will improve the range-rate accuracies from ∼0.2 µ/s to ∼0.6 nm/s. It is

expected that this substantial improvement could enable a GFO to measure the gravity

field to an improved spatial resolution, thus benefiting all previously discussed areas of

scientific research.

1.4 Research Overview

The goal of this work is to develop a thorough error analysis of a follow-on grav-

ity mission to GRACE (GFO). As described in the previous section, Ball Aerospace &

Technologies Corp., Boulder, CO has developed an interferometric laser ranging system

with a future satellite gravity mission in mind. It is expected that a GRACE-like mis-

sion equipped with the interferometric laser ranging system would improve the spatial

resolution to which the Earth’s gravitational field is observed from space. An improved

resolution in the estimates would enable further achievements in the areas of scientific

study discussed in Section 1.2. Additionally, GFO missions which employs a drag-free

system and a reduced orbital altitude are also considered.

In this work, full numerical simulations are performed to determine the expected

performance of three different GFO mission configurations and are compared to the

simulated performace of the current GRACE mission. These simulations account for all

major sources of error which affect the estimation of time-variable gravity. Numerical

simulations for the GFO missions utilize the error budget for the interferometric laser

ranging system presented in Pierce [2008]. The results of this trade study are useful for
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planning a future gravity mission similar to GRACE.

An important part of this research is the quantification of the temporal aliasing

error on the time series of the simulated regional gravity estimates for the different

mission configurations. The simulations show that the aliasing errors dominate, so

the sources of this error are investigated separately to determine their effects on the

solutions.

A final key part of this work is a comparison between the traditional gravity

estimation method of spherical harmonics, and a localized mascon gravity estimation

technique. This comparison is relevant because current GRACE data are processed

using a variety of techniques, and understanding the effectiveness of these two estimation

methods at recovering the time-variable gravity signal in the GRACE data may shed

light on how the current and future data should be handled.

The work presented is organized into five parts:

(a) Chapter 2 of this study develops the mathematical expressions that are used

in defining the gravitational field of the Earth. A global representation of the gravity

field using spherical harmonics is presented, followed by a description of the mascon

representation, which can be used to describe both a global and a regional gravity

field. The averaging kernel technique which recovers regional mass variation from global

sets of spherical harmonics is described. The final section of the chapter summarizes

the statistical tools which are used to compare the accuracy of the simulated gravity

estimates to the true signal.

(b) Chapter 3 describes in detail the numerical simulation procedure used in this

study. This chapter includes a description of the force models used in the simulations,

and the linear estimation theory that is implemented by the simulation software. The

orbital parameters for GRACE and GFO are summarized.
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(c) Chapter 4 contains detailed descriptions of all sources of error included in the

numerical simulations. The described error sources are the inter-satellite measurement

errors, the accelerometer and drag-free errors, the satellite positioning errors, and the

temporal aliasing errors. The final section summarizes the GRACE and the three con-

sidered GFO mission configurations, which are defined by the orbital parameters and

sources of error of the included instrument suite.

(d) Chapter 5 is a presentation of all results of the numerical simulations. First,

basin locations for South American and Greenland are defined. Next, the simulated

gravity estimates are presented for different mascon estimation methods to determine

the ideal method for the results to be processed and presented. Gravity estimates are

then given and analyzed for two cases: 1.) instrument noise only (no atmospheric,

oceanic, and tidal model errors), and 2.) all error sources. The various components of

the temporal aliasing errors are investigated. Lastly, the results obtained with spherical

harmonic averaging kernels, and the mascons method are presented.

(e) Chapter 6 contains the summary and conclusions of the study along with

recommendations for a potential future follow-on gravity mission to GRACE.
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Chapter 2

The Earth Gravitational Field

2.1 Introduction

The gravitational field of the Earth is spatially irregular. Anomalies in the grav-

itational field are due to the non-sphericity of the Earth and the inhomogeneous mass

distribution within its body and on its surface. The ellipticity is dominant and a ref-

erence ellipsoid is used as a first approximation of the Earth’s shape and gravitational

field. The geoid is commonly used to describe the gravitational field with respect to the

reference ellipsoid and is represented by spherical harmonics. It is also common for the

gravity anomalies to be represented in terms of equivalent water height.

2.2 Definition of the Geoid

The geoid is defined as the surface within or around the Earth that is everywhere

normal to the direction of gravity and coincides with mean sea level in the oceans [edi-

tors, 2003]. The geoid is determined by the total potential of gravity W (r, φ, λ), which

is the combination of gravitational potential V (r, φ, λ) and the rotational potential. It

is described by

W (r, φ, λ) = V (r, φ, λ) +
1

2
ω2r2 cos2 φ, (2.1)
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where r is the radial distance from the center of the Earth, φ is the geocentric latitude,

λ is the longitude, and ω is the rotation rate of the Earth. Any surface for which

W (r, φ, λ) = constant is called an equipotential surface. The geoid is the equipotential

surface that best approximates with mean sea level.

λ

θ
φ

O

ω

X

Z

Y

r

equator

Figure 2.1: Geometry of Earth-fixed frame used in study.

The shape of the earth is often approximated as a reference ellipsoid and can be

defined by the flattening,

f =
a − b

a
(2.2)

where a and b are the equatorial and polar radius respectively. Currently f = 1/298.257

is the adopted best value for the Earth [Seeber , 2003]. The equatorial radius of the Earth

differs from the polar radius by ∼21 km. In Section 2.3 the reference ellipsoid is defined

using spherical harmonics.

Figure 2.2 shows both the reference ellipsoid and the geoid. The difference, N , of

the geoid from the reference ellipsoid is called the geoid height. The expression for the

geoid height is given in Section 2.3.
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Earth’s surface

N

geoid

reference ellipsoid

Figure 2.2: Definition of the geoid height N

2.3 Spherical Harmonics

The gravitational potential and the geoid are conventionally represented using

spherical harmonics. The mathematical formulation used to describe the geoid is given

here. For a more detailed derivation of the material presented in this section refer to

[Kaula, 2000; Seeber , 2003; Torge, 2001]. Further definitions are also given in Appendix

A.

For a point outside of the Earth, i.e. an orbiting spacecraft, the gravitational

potential satisfies Laplace’s equation,

∇2V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0 (2.3)

which is given here in rectangular coordinates.

Since the Earth is relatively spherical in shape, it is useful to use spherical coor-

dinates which are defined as,

x = r cos φ cos λ,

y = r cos φ sin λ, (2.4)

z = r sin φ.

The objective is to convert Laplace’s equation to spherical coordinates. The partial

derivatives of the spherical coordinates with respect to the rectangular coordinates are

determined by differentiating Eq. (2.4) with respect to r, φ, and λ and solving for dr,
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dφ, and dλ. The resulting partial derivatives are used to solve for Laplace’s equation in

spherical coordinates, and is given by,

∇2V =
1

r2

∂

∂r

(
r2 ∂V

∂r

)
+

1

r2 cos φ

∂

∂φ

(
cos φ

∂V

∂φ

)
+

1

r2 cos2 φ

∂2V

∂λ2
= 0. (2.5)

The solution to Eq. (2.5) is derived by Kaula [2000] using separation of variables.

The resulting expression for the gravitational potential is,

V =
µ

r

(
1 +

∞∑

n=1

n∑

m=0

(
R⊕

r

)n

Pnm(sin φ)(Cnm cos mλ + Snm sin mλ)

)
(2.6)

where Cnm, Snm are mass integrals called geopotential coefficients, Pnm are the asso-

ciated Legendre functions, R⊕ is the radius of the Earth and µ = GM where G is the

universal gravitational parameter and M is the mass of the Earth. The subscripts n

and m refer to the degree and order respectively.

It is conventional to use the fully normalized geopotential coefficients and the fully

normalized associated Legendre functions. These are defined as,

P̃nm(sin φ) =

[
k(2n + 1)(n − m)!

(n + m)!

]1/2

Pnm(sin φ), (2.7)





Cnm

Snm





=

[
(n + m)!

k(2n + 1)(n − m)!

]1/2





Cnm

Snm





, (2.8)

with k = 1 for m = 0, and k = 2 for m 6= 0 [Seeber , 2003]. Substituting the normalized

definitions into Eq. (2.6) the expression for the gravitational potential becomes,

V =
µ

r

(
1 +

∞∑

n=1

n∑

m=0

(
R⊕

r

)n

P̃nm(sin φ)(Cnm cos mλ + Snm sin mλ)

)
. (2.9)

The disturbing potential is defined by the difference of the actual gravitational

potential W and the normal gravity U , which is defined by the reference ellipsoid. At

the point P the disturbing potential is defined by,

TP = WP − UP . (2.10)
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The elements W and U both have a gravitational and centrifugal part as defined in

Eq. (2.1). Since the rotation rate of the Earth is well known the centrifugal parts of

W and U are assumed to be the same. The disturbing potential also satisfies Laplace’s

equation and a solution is given by,

T =
µ

r

∞∑

n=2

n∑

m=0

(
R⊕

r

)n

P̃nm(sin φ)(C
∗

nm cos mλ + S
∗

nm sin mλ). (2.11)

with

C
∗

nm = observed Cnm - reference Cnm,

S
∗

nm = observed Snm - reference Snm.

Here the reference ellipsoid is defined in terms of spherical harmonics. The reference

ellipsoid is often defined by C20 and C40 [Seeber , 2003], but other even zonal terms

(m = 0) can be included. In Eq. (2.11) the assumption has been made that the origin

of the coordinate system has been placed at the center of mass of the Earth. For this

case, the disturbing potential becomes zero for n = 1, m = 0, 1 and the summation

begins at n = 2 [Seeber , 2003].

The expression for the geoid height is found by dividing the disturbing potential

T by normal gravity γ [Torge, 2001]. Thus,

N =
T

γ
=

(
µ

rγ

) ∞∑

n=2

n∑

m=0

(
R⊕

r

)n

P̃nm(sin φ)(C
∗

nm cos mλ + S
∗

nm sin mλ). (2.12)

In practice it is necessary to truncate the infinite summation at some maximum

degree (Nmax) to which the gravitational potential can be determined. Also a spherical

approximation is made for normal gravity,

γ = µ
r2

∣∣
r=R⊕

= µ
R2

⊕

.
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The final expression for geoid height becomes,

N = R⊕

Nmax∑

n=2

n∑

m=0

P̃nm(sin φ)(C
∗

nm cos mλ + S
∗

nm sin mλ). (2.13)

Similarly, changes in the geoid can be expressed,

∆N = R⊕

Nmax∑

n=2

n∑

m=0

P̃nm(sin φ)(∆Cnm cos mλ + ∆Snm sin mλ) (2.14)

where ∆Cnm and ∆Snm are representative of changes in the spherical harmonic coeffi-

cients.

It is also common, especially in GRACE applications, to give the disturbing grav-

itational potential in terms of the water equivalent height. This is done by representing

changes to the gravitational potential with a change in surface density. For a full deriva-

tion refer to [Wahr et al., 1998]. To summarize, the surface density is calculated with

the same set of spherical harmonic coefficients as in Eq. (2.14) with the equation:

∆σ =
R⊕ρ⊕

3

Nmax∑

n=2

n∑

m=0

P̃nm(sin φ)
2n + 1

1 + kn
(∆Cnm cos mλ + ∆Snm sin mλ), (2.15)

where ρ⊕ is the average density of the Earth and kn is the loading Love number for the

Earth of degree n. The surface mass change in terms of equivalent water height is found

by ∆σ/ρw where ρw is the density of water. All plots of the gravity field in this report

are given in cm of equivalent water height.

2.4 Mascons

Mass concentration blocks (mascons) were first used as a regional gravity estima-

tion technique by Muller and Sjogren [1968]. The technique was developed in an effort

to generate a map of the gravity field of the front side of the moon. Since the Deep

Space Network can only provide tracking data for lunar orbiters when the spacecraft is
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on the front side of the moon, the mascon technique utilizes only localized tracking data

to estimate regional anomalies in the gravity field. Previous to this point, all satellite

gravity estimation was done using longer sets of globally distributed data to estimate a

set of spherical harmonics.

The same technique can be used for the estimation of local gravity anomalies

for any planetary body given a set of sufficient localized satellite tracking data. The

GRACE satellite data are especially useful for generating mascon solutions for the Earth.

There are several advantages in using a mascon approach over the traditional method

of spherical harmonic estimation. One clear advantage of the mascon technique is that

global coverage of tracking data is not a requirement as it is with spherical harmonic

estimation. Only data over the region of interest is needed. Since only localized data are

used to construct the mascon solutions, errors in the force models from a different area of

the globe do not affect the solution over the considered area. Another advantage of the

mascon approach is that solutions can be constructed with a greater temporal resolution

than what is possible with spherical harmonics. This may be especially important as

the main thrust of the GRACE and GRACE Follow-On missions is to observe temporal

changes in mass distribution in the Earth system. In addition, the mascon approach

is significantly less expensive computationally than solving for a full set of spherical

harmonics. This is especially important as a GRACE Follow-On mission will likely aim

to measure variations in the gravity field at smaller spatial scales than GRACE, for

which spherical harmonic solutions would require the use of a supercomputer. Provided

that a supercomputer is available, spherical harmonic estimation to a very high degree

and order would still require a great deal of processing time.

Recently, a new mascon technique has been developed by Rowlands et al. [2005].

This new approach uses a set of lumped spherical harmonic coefficients to form mascons.

27



This method is discussed in Section 2.4.2 while the method of Muller and Sjogren [1968]

is explained in Section 2.4.1.

2.4.1 Point mass and disk mascons

The work presented in [Muller and Sjogren, 1968] uses a point mass for each mas-

con. With this approach, point masses are placed at chosen locations on the planetary

surface. The acceleration of the spacecraft caused by each point mass is:

r̈ = −Gm

r3
r, (2.16)

where r is the vector from the point mass to the spacecraft, and m is the mass of the

mascon. A least-squares process is then used to find the values of the point masses that

best fit the localized spacecraft tracking data. With enough point mass mascons placed

on the surface of the planetary body, a regional map of the gravity anomalies can be

constructed.

Further investigations into the mascon approach revealed that greater accuracy

in the regional gravity anomalies can be achieved by replacing each point mass with

a disk [Wong et al., 1971]. The components of acceleration caused by each disk are

found by taking the expression for an oblate spheroid, as derived by Moulton [1914],

and taking the limit as the thickness approaches zero:

ẍ = −3Gm

2a3

[
−
√

k

(1 + k)
+ sin−1

(
1√

1 + k

)]
x,

ÿ = −3Gm

2a3

[
−
√

k

(1 + k)
+ sin−1

(
1√

1 + k

)]
y, (2.17)

z̈ = −3Gm

a3

[
1√
k
− sin−1

(
1√

1 + k

)]
z,

where k is the solution of the quadratic:

k2a2 + [a2 − (x2 + y2 + z2)]k − z2 = 0,
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where a is the radius of the disk, m is the mass of the mascon, and x, y, and z are the

coordinates of the spacecraft from the center of the disk, with x and y lying in the plane

of the disk and z lying along the axis. The design parameters in the setup of mascons

includes selecting the locations of the mascons and the disk radius.

As before, a least-squares process is used to find the values of the disk masses

that best fit the data. The results can then be used to generate regional maps of gravity

anomalies. The mascon solution represents anomalies in the gravity field with respect

to some previously defined background gravity field. That background field could be

defined as a point mass simplification of the planetary body or a set of background

spherical harmonic coefficients.

2.4.2 Lumped harmonic mascon technique

The lumped harmonic mascon technique uses a set of differential potential coef-

ficients to represent a small uniform layer of mass over a region at some epoch t. The

delta coefficients are computed by Chao et al. [1987]:

∆Anm =
(1 + k′

n)R2
⊕σ(t)

(2n + 1)M

∫
Ynm(Ω)dΩ, (2.18)

where n and m are the spherical degree and order, respectively, k′
n is the load Love

number of degree n, R⊕ is the Earth radius, Ω is a representation of surface area, Ynm

is the spherical harmonic of degree n and order m, and σ(t) is the mass of the layer

over a unit of surface area at epoch t.

Once the size and shape of the mascons are selected, Eq. (2.18) is used to gen-

erate the set of delta coefficients that corresponds to 1 cm of water over each mascon.

The mascon estimate is then a scale factor of that set of delta coefficients, and is rep-

resentative of how much the gravitational signal varies with respect to the background
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field over that mascon in units of cm of water.

A least-squares estimation procedure is used to find the estimates of the mascon

parameters. The partial derivatives of the tracking observations with respect to the

mascon parameters are equal to a linear combination of the partial derivatives of the

tracking observations with respect to the spherical harmonic coefficients, multiplied by

the delta coefficients for that mascon [Luthcke et al., 2008]:

∂Oi

∂P j
t

=
Nmax∑

n=2

n∑

m=0

(
∂Oi

∂Cnm

∆C
j
nm +

∂Oi

∂Snm

∆S
j
nm

)
, (2.19)

where ∂Oi/∂P j
t is the partial derivative of the range-rate observation i with respect to

the mascon P j at time t, ∂Oi/∂Cnm and ∂Oi/∂Snm are the partial derivatives of the

range-rate observation with respect to the spherical harmonic coefficients, and ∆Cnm

and ∆Snm are found using Eq. (2.18).

It is often useful to apply constraints to the mascon estimation procedure. Both

spatial and temporal constraints can be placed on the solution by introducing a con-

straint matrix into the system of equations. The constraint matrix constrains each

distinct pair of mascons to each other, resulting in a symmetric p× p matrix, where p is

the number of estimated mascons. The components of the symmetric matrix are given

by:

Cij = exp

[
2 − dij

D
− |tij|

T

]
, (2.20)

where D and T are the correlation distance and correlation time respectively, dij is the

distance between blocks i and j, and tij is the difference in time tags for block i and

j (note that i and j in the above equation are not the same as in Eq. (2.19)). The

correlation distance and time are design parameters of the solution and are selected

based on the strength of the data and the size of the mascon blocks.

Improved mascon solutions are achieved by forming separate constraint matrices
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for locations which have unrelated geophysical signals. For example, if land and ocean

mascons are constrained separately, the result is a land constraint matrix with dimen-

sions q× q and an ocean constraint matrix with dimensions r× r, where q and r are the

number of land and ocean mascons respectively, and r + q = p. The C matrix is thus

block diagonal and still is of dimension p × p.

It is important to note that since only localized tracking data are used to generate

mascon solutions, the longer wavelength gravity field signals may not be well recovered.

To mitigate this issue, a surface area larger than the actual area of interest is selected

and the solution at the edges is discarded.

This mascon technique has proven successful in estimating variations in ice mass

over Greenland and in the Gulf of Alaska with a relatively high spatial and temporal

resolution [Luthcke et al., 2006, 2008]. The lumped harmonic mascon technique is used

throughout this work.

2.5 Averaging Kernels

Regional estimates of mass content can be extracted from spherical harmonic

solutions with averaging kernels. Given a time series of spherical harmonic gravity

estimates, an averaging kernel can be used to form a time series of mass variation for

some selected region or basin. This data set is often then used to calculate the trend and

annual signal for the region. This approach only applies to determining mass variations

for sets of spherical harmonics since the mascon technique of Section 2.4.2 allows for the

mass changes to be directly summed. The method summarized in this section is fully

developed in [Swenson and Wahr , 2002].

An exact averaging kernel, ϑ(φ, λ), describes the shape of the basin to be inves-
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tigated, and is defined by:

ϑ (φ, λ) =





0 outside the basin

1 inside the basin

(2.21)

The mean of the vertically integrated mass change for a given region is:

∆σregion =
1

Ωregion

∫
∆σ(φ, λ)ϑ(φ, λ)dΩ, (2.22)

where dΩ is an element of solid angle and Ωregion is calculated by integrating ϑ(φ, λ)

over the sphere. Using Eq. (2.15), Eq. (2.22) can be expressed as a sum of spherical

harmonic coefficients:

∆σregion =
R⊕ρ⊕

3Ωregion

∞∑

n=0

n∑

m=0

2n + 1

1 + kn

(
ϑC

nm∆Cnm + ϑS
nm∆Snm

)
(2.23)

where ϑC
nm and ϑS

nm are the spherical harmonic coefficients which describe ϑ(φ, λ):

ϑ(φ, λ) =
1

4π

∞∑

n=0

n∑

m=0

P̃nm(sin φ)
(
ϑC

nm cos mλ + ϑS
nm sinmλ

)
(2.24)





ϑC
nm

ϑS
nm





=

∫
ϑ(φ, λ)P̃nm(sin φ)





cos mλ

sin mλ





dΩ. (2.25)

The calculated mass within a given basin will differ from the truth due to satellite

measurement error and truncation error. Satellite measurement error is the result of

the sum of error sources which affect any gravity recovery mission as described in detail

in Chapter 4. Truncation error exists because the spherical harmonic coefficients which

describe the basin are not expanded to infinity and are thus not a perfect representation

of the shape of the basin. The maximum degree to which the basin harmonics are formed

is limited by the size of the spherical harmonic expansion which describes the estimated

gravity field as provided by GRACE or a GFO. The estimated average mass within the

region as it relates to these error sources is defined by:

∆σ
GRACE
region = ∆σ

truth
region + ∆σ

satellite error
region + ∆σ

truncation error
region (2.26)
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The magnitude of the satellite error increases with a higher truncation degree while the

truncation error increases with a smaller truncation degree.

The exact averaging kernel, ϑ(φ, λ), contains short-wavelength coefficients due to

the fact that it changes discontinuously from a value of 1 to 0 at the border of the selected

basin. Since the satellite errors are largest for high degree n, it is advantageous to use

a smoothed averaging kernel, W (φ, λ), in place of the exact averaging kernel, ϑ(φ, λ),

to obtain a more accurate estimate of the average mass within the basin. Substituting

W (φ, λ) for ϑ(φ, λ) in Eq. (2.22), the approximate basin average is given by:

∆̃σregion =
1

Ωregion

∫
∆σ(φ, λ)W (φ, λ)dΩ. (2.27)

As before, Eq. (2.27) can be expressed as a sum of spherical harmonic coefficients:

∆̃σregion =
R⊕ρ⊕

3Ωregion

∞∑

n=0

n∑

m=0

2n + 1

1 + kn

(
W C

nm∆Cnm + W S
nm∆Snm

)
, (2.28)

where W C
nm and W S

nm describe W (φ, λ):

W (φ, λ) =
1

4π

ntrnc∑

n=0

n∑

m=0

P̃nm(sin φ)
(
W C

nm cos mλ + W S
nm sin mλ

)
. (2.29)

In this study, a Gaussian smoothing function was used to construct the averaging

kernel. For a Gaussian smoothed averaging kernel the weighting coefficients in Eq.

(2.28) are defined by: 



W C
nm

W S
nm





= 2πWn





ϑC
nm

ϑS
nm





, (2.30)

where

Wn =
1√

2n + 1

∫ π

0
W (γ)P̃n0(cos γ) sin γdγ, (2.31)

and

W (γ) =
b

2π

exp[−b(1 − cos γ)]

1 − e−2b
, (2.32)

b =
ln(2)

(1 − cos(r1/2/R⊕))
,
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and r1/2 is the approximate distance at which the averaging kernel changes from a value

of 1 inside the basin to 0 outside the basin.

Since the value of a smoothed averaging kernel changes gradually from a value of

1 inside the basin to 0 outside the basin, some undesired signal that is outside of the

basin will affect the estimate of the basin mass average. This problem is referred to as

leakage. Another effect of the smoothed averaging kernel is that the magnitude of the

estimated mass signal is somewhat dampened by the smoothing. In order to account

for this effect, a scale factor must be applied to the solution. This scale factor can be

determined by generating a set of spherical harmonics, which represent a uniform mass

over the selected basin, and then recovering that simulated signal with the smoothed

averaging kernel. The scale factor is selected such that the recovered mass exactly

matches the total mass present for the uniform mass representation of the basin.

2.6 Methods for Analyzing the Accuracy of Gravity Estimates

This section summarizes the methods used in this study to determine the rel-

ative accuracies of the gravity estimates and compare the various simulated mission

configurations.

The root-mean-square (RMS) is a statistical tool that determines the magnitude

of variations of some quantity ǫ, and is defined by:

RMS =

√√√√ 1

n

n∑

i=0

ǫ2
i . (2.33)

In this study the RMS is used to quantify the errors of the simulated gravity estimates

in two different ways. First, the 1◦ × 1◦ local truth and estimated spatial maps are

differenced to form a local spatial map that defines the error. The values of the error

grid define ǫ and the RMS of the spatial error map is calculated. Second, a time series

34



of water mass changes for given basins are calculated with a series of gravity estimates.

The truth mass changes are differenced with the estimated mass changes to form a time

series of errors in the mass change estimates. This time series defines ǫ and determines

the RMS of the mass change estimates.

It is desirable to have some method for presenting the errors as a function of

spatial frequency. For full spherical harmonic expansions describing the global gravity

field, the geoid degree variance is often calculated:

RMS(Nn) = R⊕

√√√√√√

n∑

m=0

(C2
nm + S2

nm)

2n + 1
, (2.34)

where R⊕ is the radius of the Earth, and Cnm and Snm are the harmonic coefficients.

The harmonic coefficients here could describe either the estimated coefficients to show

the power of the estimated signal at each degree, or the error coefficients to observe the

spatial frequency characteristics of the errors. Since most of the gravity estimates in

this study are formed with the mascon regional gravity estimation method this method

of comparison will not be of use.

A method used by Han et al. [2005] determines the frequency characteristics

of a local spatial map. The procedure is summarized by two steps: 1.) calculate the

two dimensional spectral density of a localized spatial map, and 2.) sample the two

dimensional spectral density in azimuth to obtain the power at each sampled frequency.

The first step assumes that the map is planar and the second step assumes an isotropic

spectral density. Both assumptions are simplifications of the problem, but the results

do provide good spectral information of the original spatial plot. The first step of the

procedure is implemented by calculating the two dimensional discrete Fourier transform

given by Eq. (B.10) and then determining the two dimensional spectral density with
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Eq. (C.3).

Figure 2.6 provides a few examples of spatial maps and their corresponding two

dimensional spectral densities to illustrate the concept of the described technique. The

example spatial maps contain signals at frequencies which are perfectly sampled by the

Fourier transform. The white dots on the spectral maps are high values and show the

frequencies which are present in the spatial map. Frequencies in spatial maps that are

not sampled by the Fourier transform introduce an error called spectral leakage, which

affects the spectral density at the sample frequencies.

As previously mentioned, the gravity estimates are used to generate time series

of mass changes for given basin locations. With the lengthy time series generated in

this report (25 months) it is possible to estimate some key variables of the mass change,

specifically trend, amplitude of the annual signal, and phase. This is done by performing

a least squares fit to the data by estimating a constant, trend, amplitude of annual signal,

and a phase for both the truth signal and the estimated signal. The estimates for the

various mission configurations can then be compared to the truth to determine their

ability to measure these values.
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Figure 2.3: Examples of two dimensional spectral densities. Left column: spatial maps
with different two dimensional cosine functions, Right column: corresponding two di-
mensional spectral density.
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Chapter 3

Simulation Models and Procedure

3.1 Introduction

This chapter describes the models and procedure used for the time-variable grav-

ity recovery numerical simulations. The simulation procedure is summarized by three

steps 1.) generate simulated satellite-to-satellite range-rate data and satellite position

data, 2.) estimate satellite state initial conditions and satellite accelerations, and 3.)

estimate the gravity field and adjust the satellite state. All numerical simulations are

performed using the GEODYN orbit determination software and SOLVE large linear

systems solver, which have been made available by NASA Goddard Space Flight Center.

Contained in this chapter is a description of the force models, the linear esti-

mation theory implemented by the simulation software, the gravity recovery simulation

procedure, and the mission orbital parameters, which are used for GRACE and the GFO

missions. The simulation procedure describes the inclusion of all major error sources

for time-variable gravity estimation which are fully explained in Chapter 4.
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3.2 Force Models

The motion of an Earth orbiting satellite is described by the differential equation:

r̈ = − µ

r3
r + f, (3.1)

where r is the geocentric position vector of the spacecraft, and f is the sum of the

perturbing forces as given by:

f = fNS + fNB + fg + fD + fSRP + fERP + fOther, (3.2)

where

fNS is caused by the non-spherical gravity field,

fNB is the result of N-body perturbations, primarily from the Sun and Moon,

fg is the contribution from general relativity,

fD is the forcing from atmospheric drag,

fSRP is forcing from solar radiation pressure,

fERP is forcing from Earth radiation pressure,

fOther is the total contribution of all other forces.

The term fNS is composed of the static gravity field, the Earth and ocean tides,

the atmospheric and hydrological signals, and the response of the solid Earth to these

time-variable loadings. This force can be calculated as the gradient of the potential U :

fNS = ∇U (3.3)

where

U =
µ

r

∞∑

n=2

n∑

m=0

(
R⊕

r

)n

P̃nm(sin φ)(Cnm(t) cos mλ + Snm(t) sin mλ). (3.4)

Here, Cnm(t) and Snm(t) are time-dependent normalized geopotential coefficients which

are used to describe all variations in the gravity field. The accurate determination of

39



the time-varying component of the gravitational signal is the primary goal of GRACE

and a GFO mission.

The fNB and fg terms are well understood and their affects on satellite motion are

modeled and removed prior to gravity estimation. The terms fD, fSRP , and fERP are

non-conservative forces. The accelerations on the satellite caused by these components

are measured by GRACE with the on-board accelerometer. The accelerometer data

are then used to separate these forces from the conservative forces caused by variations

in the gravity field. A GFO mission may be equipped with a drag-free system, for

which thrusting is used to counteract the non-conservative forces. Appropriate errors

for the on-board accelerometer and the drag-free system are included in the numerical

simulations and are described in detail in Chapter 4. The drag-free system is also

referred to as the gravitational reference sensor (GRS).

As explained in Section 1.2, several of the geophysical processes, which make up

the fNS term, are modeled and removed prior to the estimation of the gravity field.

Errors in the models used to remove these signals can cause significant errors in the

gravity estimates for GRACE. The inclusion of force model errors in this simulation

study is required for a realistic assessment of GRACE and GFO mission performance.

To simulate these errors, Truth force models are used to simulate truth data and Nominal

force models are used in the gravity estimation. The difference between the models is

then considered the level of uncertainty for that particular geophysical process. This

procedure, which assumes that the differences between two different geophysical models

represents the error of that model, has been a common practice for GRACE simulation

studies [Han et al., 2004; Seo et al., 2008a; Seo and Wilson, 2005; Thompson et al.,

2004]. These model errors introduce a significant error source into the gravity solutions

known as temporal aliasing which is discussed in Section 4.5. A table summarizing the
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force models used in the simulations is given in Table 3.1.

Truth Nominal

Background Field EIGEN-GL04C EIGEN-GL04C

Tidal FES2004 GOT00

Atmospheric ECMWF NCEP

Oceanographic OMCT MOG2D

Table 3.1: Force models used for numerical simulations.

The background gravity field, EIGEN-GL04C is an estimate of the static gravity

field found using GRACE and LAGEOS mission data, altimeter data, and gravimetry

measurements. For the simulations in this work, the same background field is used for

the Truth and Nominal models, meaning that the errors in the static gravity field are

not included. The static field errors are excluded for two reasons: 1.) The focus of this

work is the recovery of time-variable gravity, which will be largely unaffected by errors

in the static field as those errors will be identical from one time step to the next, and

2.) The errors in the static field are quite large at a high spatial resolution and would

be the dominant feature in all of the estimated time-variable gravity maps presented

in this work. Additionally, it is also a possibility that the GOCE satellite mission will

provide the static portion of the gravity field with unprecedented accuracy prior to the

launch of a GFO, thus minimizing this source of error.

The finite element solution (FES) tidal models are computed using the tidal

hydrodynamic equations assimilated with tide gauge and TOPEX/Poseidon data. The

process is explained by Lefèvre [2002]. The Goddard Ocean Tide (GOT) model is an

assimilated model computed from years of the TOPEX/Poseidon data and is developed

by Ray [1999].
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The atmospheric estimates are provided by the European Centre for Medium-

Range Weather Forecasts (ECMWF) and the National Centers for Environmental Pre-

diction (NCEP) and are formed using a global network of meteorological stations. The

oceanographic component is due to meteorological forcing which causes changes in ocean

heights that are not part of the tidal signal. The most simplistic representation of this

signal is the inverted barometer (IB) affect. The IB assumption states that a change in

atmospheric pressure is balanced by a corresponding change in ocean height and does

not take into account wind effects [Wunsch and Stammer , 1997]. For the IB assump-

tion a 1 mbar increase in atmospheric pressure results in a ∼ 1 cm decrease in ocean

height. The OMCT (Ocean Model for Circulation and Tides) and MOG2D-G (2D

Gravity Waves model) oceanographic models more accurately model the high-frequency

oceanic variations caused by meteorological forcing with the use of hydrodynamic equa-

tions. Refer to [Flechtner , 2007] and [Carrère and Lyard , 2003] respectively for de-

tailed descriptions of the OMCT and MOG2D-G oceanic models. The atmospheric and

oceanographic models are summed and input into GEODYN as 3-hourly sets of spher-

ical harmonics. The Truth model is the sum of ECMWF and OMCT which is directly

available as the GRACE AOD1B (atmosphere and ocean de-aliasing level-1b) product

from <ftp://podaac.jpl.nasa.gov/grace/>. The sum of NCEP and MOG2D is used as

the Nominal set of models. It should be noted that the atmospheric tides are present

in the ECMWF/OMCT model but are not present in the NCEP/MOG2D model. For

this reason the atmospheric tides are removed from the FES2004 tidal model but not

from the GOT00 model.

The sum of the atmospheric and oceanographic components are usually referred

to as AOD (Atmosphere and Ocean De-aliasing). The AOD Truth and Nominal mass

variation signals for the Amazon basin and Greenland for 2003 are shown in Figure 3.1(a)
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and Figure 3.1(b) respectively. The AOD error for the two locations (the difference

between the Truth and Nominal models) is plotted in Figure 3.2. Maps of the mean

AOD monthly errors for South America and Greenland are plotted in Figure 3.3.
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Figure 3.1: AOD signal mass variations for 2003.
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Figure 3.2: AOD errors for Amazon basin and Greenland mass variations for 2003.
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Figure 3.3: Monthly means of South America and Greenland AOD model error
(ECMWF/OMCT minus NCEP/MOG2D). The twelve month mean has been removed.
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In order to effectively determine the ability of a GRACE Follow-On mission to

recover the gravity field, it is necessary to estimate the time-variable gravity field at

multiple locations on the Earth’s surface. In this study, gravity estimates are simulated

for Greenland and the Amazon and surrounding basins of South America. These loca-

tions were chosen because of their interest to the scientific community and because they

are located at different latitudinal bands, resulting in different groundtrack coverage for

the two locations for both GRACE and GFO.

The Truth signal, which is estimated by the numerical simulations over South

America is the Global Land Data Assimilation System (GLDAS) hydrology model de-

veloped by Rodell [2004b]. As with the time-varying atmospheric and oceanic signal,

the GLDAS Truth signal is input into GEODYN as 3-hourly sets of spherical harmonics.

The monthly means of twenty four months of GLDAS data are shown in Figure 3.4.

These spatial plots represent the Truth signal for South America and are used to deter-

mine the level of error for the estimates obtained for the GRACE and GFO simulations.

The Truth GLDAS signal is included up to spherical harmonic degree and order 72.

A model for mass change over Greenland is not readily available, so a Truth model

is constructed. The Truth model for Greenland is a 1◦ × 1◦ grid for which each block

is assigned a mass trend value and an amplitude of the annual signal. The amplitude

of the annual signal is dependent on the elevation of the block. These monthly Truth

grids are converted into spherical harmonics prior to being used as input for GEODYN

with an expansion to degree and order 180. The mass trend values for the 1◦×1◦ blocks

range from an increase of ∼ 0.2 GT/year to a mass loss of of ∼ 4.7 GT/year. The

amplitude of the annual signal for the region below 2000 m elevation is 300 GT while

the region above 2000 m has an amplitude of 50 GT.
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Figure 3.4: Truth signal for South America over 24-month simulation (Jan, 2003 to Dec,
2004).
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Figure 3.5 is the spherical harmonic map of mass trend and Figure 3.6 shows the

Greenland locations which are above and below 2000 m. The resulting Greenland Truth

signal is the sum of the mass trend and the annual signal and is shown in Figure 3.7.

Figure 3.5: Map of truth mass trends for constructed Greenland model.

Figure 3.6: Blue section: elevations below 2000 m are assigned an annual amplitude of
300 GT. Red section: elevations greater than 2000 m are assigned and annual amplitude
of 50 GT.
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Figure 3.7: Truth signal for Greenland over 24-month simulation (Jan, 2003 to Dec,
2004).
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3.3 Linear Estimation Theory

A weighted least squares estimation procedure is implemented in the GEODYN

and SOLVE software packages used for the numerical simulations. This section sum-

marizes the linear estimation theory. For a more detailed derivation of the equations

presented here, refer to [Tapley et al., 2004c].

The state vector is composed of all variables to be estimated, and can be defined

as,

X = [r v α]T , (3.5)

where r and v are the position and velocity vectors respectively, and α consists of the

constant model parameters. For the simulations performed in this study α is made

up of either the satellite general accelerations or the gravity parameters (i.e. spherical

harmonic coefficients or mascons).

The nonlinear equations describing the dynamics of the state are given as

Ẋ = F (X, t) X(tk) ≡ Xk (3.6)

where Xk is the n-dimensional state vector at time tk. The observation equation is

represented as

Yi = G(Xi, ti) + ǫi i = 1, ..., l (3.7)

where each Yi is a set of p observations at time ti, G(Xi, ti) is a nonlinear relationship

between the state vector and the observation, and ǫi is representative of the measure-

ment noise.

The nonlinear state and observation equations are then linearized in the following

way. First, the n×1 state deviation vector x and the p×1 observation deviation vector
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y are defined:

x(t) = X(t) − X∗(t) y(t) = Y(t) − Y∗(t), (3.8)

where X is the true state and X∗ is the reference state. A first-order Taylor series

expansion can then be performed on Eq. (3.6) and Eq. (3.7) to arrive at:

ẋ(t) = A(t)x(t) (3.9)

yi = H̃ixi + ǫi (i = 1, ..., l) (3.10)

where

A(t) =
∂F

∂X
(X∗, t) H̃i =

∂G

∂X
(X∗, t) (3.11)

The general solution for Eq. (3.9) can be expressed as

x(t) = Φ(t, tk)x0 (3.12)

where Φ(t, tk) is the state transition matrix and xk is the state deviation vector at time

tk. The state transition matrix satisfies the following differential equation:

Φ(t, tk) = A(t)Φ̇(t, t0) Φ(tk, tk) = I (3.13)

and can be solved for at any time, t, with numerical integration.

Combining Eq. (3.12) and Eq. (3.10), the observations can be related to a single

epoch of the state:

y = Hxk + ǫ (3.14)

where

y =




y1

y2

...

ym




H =




H̃1Φ(t1, tk)

H̃2Φ(t2, tk)

...

H̃mΦ(tm, tk)




ǫ =




ǫ1

ǫ2

...

ǫm




(3.15)
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where, y is an m×1 vector, xk is an n×1 vector, ǫ is an n×1 vector, H is an m×n

mapping matrix, and m = p × l and is the total number of observations where p is the

number of observations per epoch and l is the number of epochs.

The weighted least squares solution uses a weighting matrix W which describes

the statistical properties of the observations. If an a priori state deviation vector x̄k

is available with weighting matrix W , then the weighted least squares solution is found

by minimizing the performance index:

J(xk) = 1/2(y − Hxk)
T W (y − Hxk) + 1/2(x̄k − xk)

T W k(x̄k − xk) (3.16)

which results in:

x̂k = (HT WH + W k)
−1(HT Wy + W kx̄k). (3.17)

Here, x̂k is the best estimate of the state deviation vector in a weighted least squares

sense, and is added to the nominal value of the state X∗ to obtain the best estimate of

the state vector X. Eq. (3.17) is sometimes referred to as the normal equation and the

n×n matrix (HT WH + W k) is called the information matrix. Finding the inverse of

the information matrix can be difficult computationally for large values of n.

For the numerical simulations in this work, GEODYN orbit determination soft-

ware forms the normal equations and SOLVE large linear systems solver software solves

for the state deviation vector in Eq. (3.17). SOLVE utilizes Cholesky decomposition

which is more accurate and stable than direct matrix inversion. The Cholesky method

decomposes a symmetric positive definite matrix into a product of two triangular ma-

trices, one lower and one upper, such that the lower triangular matrix is the transpose

of the upper. Use of Cholesky decomposition thus requires that the information matrix

in Eq. (3.17) be symmetric positive definite.

A full derivation and algorithm for Cholesky decomposition is presented by [Ta-

52



pley et al., 2004c] and a summary is given here. The normal equation of Eq. (3.17) is

rewritten as:

x̂ = M−1N. (3.18)

Allowing M to be a symmetric positive definite matrix and R to be an upper triangular

matrix such that

RT R = M (3.19)

Eq. (3.18) can be expressed as

RT Rx̂ = N. (3.20)

Using the definition

z = Rx̂ (3.21)

Eq. (3.20) can be written as

RTz = N (3.22)

where RT is lower triangular. The components of z are solved using a forward recursion

relation and Eq. (3.21) is then solved using a backward recursion to determine the state

deviation vector x̂.

3.4 Gravity Recovery Simulation Procedure

The goal of the numerical simulations is to observe how well GRACE and a

potential GFO recover a realistic time-variable gravity signal. In order to assess the

performance of these missions, various Truth gravity signals are used in separate simu-

lation studies. The simulation procedure is identical regardless of which Truth signal is

estimated. The end result of the numerical simulation is either a set of spherical har-

monics (Section 3.4.4) or mascons (Section 3.4.5). Most of the simulations performed

53



for this work apply the mascon technique, largely due to the computational advantages

associated with mascon estimation as previously discussed in Section 2.4.

3.4.1 Numerical Simulation Procedure

A flow chart describing the numerical simulation procedure is shown in Figure

3.8 and is summarized by the following three steps:

Step 1.) Truth satellite-to-satellite range-rate data and satellite ephemeris are
generated by propagating the satellites with the Truth set of force models and
initial conditions as input (GEODYN run 1: Orbit propagation). Mission spe-
cific range-rate measurement noise and accelerometer noise is added to the Truth
range-rate data. Errors are also added to the satellite ephemeris data. This
noisy data are representative of the data which would be available from a real
GRACE or GFO mission.

Step 2.) Satellite initial conditions and satellite accelerations are estimated with
the Nominal set of force models and noisy range-rate and satellite position data
from Step 1 (GEODYN run 2: Data reduction).

Step 3.) The observation residuals and partial derivatives are computed with the
Nominal set of force models, the noisy range-rate data, the estimated satellite
initial conditions from Step 2, and the estimated satellite accelerations from
Step 2 (GEODYN run 3: Data reduction).

In Step 1, the GEODYN software is run in data simulation mode. The set of Truth

force models used in this step represent the true Earth static and time-varying gravity

signal that any orbiting satellite is sensitive to, and the simulated range-rate and satellite

position data output from this GEODYN run represents perfect mission data to within

numerical precision. The models, which make up the Truth force models, are given in

Table 3.1. Due to limitations in available computer memory, it is necessary to break up

all simulations into one-day arcs. Simulated range-rate and position observations are

generated every five seconds for each one-day arc, for a total of 17,280 range-rate and

position observations per arc. Throughout this work, all gravity estimates are formed
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Figure 3.8: Numerical simulation procedure flow chart.
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as monthly solutions, which are formed by combining all of the the one-day arcs for an

entire month into one gravity estimate. In order to introduce the appropriate level of

instrument error into the numerical procedure, mission specific range-rate noise is added

to the Truth range-rate data generated by the first GEODYN run. The description of

the satellite-to-satellite range-rate errors of the GRACE K-band microwave ranging

instrument is given in Section 4.2.1 and the errors of the interferometric laser ranging

system designed for a GFO are explained in Section 4.2.2. The errors associated with the

GRACE on-board accelerometer are introduced into the simulation by determining their

affect on the range-rate measurements and including them as a range-rate error. This

error source and the procedure for the inclusion of this error is described in Section

4.3. The resulting noisy range-rate data are then representative of real satellite-to-

satellite mission data with both the range-rate and the accelerometer or GRS noise

taken into account. Appropriate noise is also added to the Truth satellite ephemeris

data to account for the imperfect satellite positions which are provided by GPS and is

described in Section 4.4.

In Step 2, GEODYN is run in data reduction mode, and the satellite initial con-

ditions and satellite general accelerations are estimated. In this step the state vector X

from Eq. (3.5) consists of twelve satellite state parameters and 384 general acceleration

parameters for a total state vector length of 396. GEODYN is setup to iterate until the

linear estimation procedure converges on a solution. The Nominal force models given in

Table 3.1 are used in this step. The satellite states must be estimated in this intermedi-

ate step because the final simulation step, Step 3, utilizes an orbit refinement procedure

where only range-rate data are used to estimate the gravity parameters and three of

the twelve satellite state parameters. This procedure is discussed in Section 3.4.3. The

estimation of all twelve satellite state parameters requires the satellite position data,
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which in the case of a real mission is provided by GPS tracking. The estimation of the

general accelerations reduces the range-rate residuals associated with the accelerometer

errors which are introduced into the data in Step 1. The simulations also show that es-

timating the general accelerations reduces the errors caused by temporal aliasing. This

procedure which includes the accelerometer errors in Step 1, and estimates the satellite

general accelerations in Step 2, is used in place of using simulated accelerometer data

and estimating accelerometer parameters. It was determined that this was a reasonable

way to incorporate the accelerometer errors into the numerical simulation procedure

[Bettadpur , 2007; Luthcke, 2009]. A detailed description of the general accelerations

estimation is given in 3.4.2. In Step 3, the estimated accelerations are fixed and the

estimated satellite states are used as the initial conditions.

For Step 3, GEODYN is set up for a single iteration data reduction run, which

outputs a file containing the observation residuals and partial derivatives that form the

normal equation as given by Eq. (3.17). As with Step 2, the Nominal force models

and the noisy range-rate data are used as inputs. The satellite state and the fixed

general accelerations from Step 2 are also inputs for the final step. The state vector X,

for each arc, contains the twelve satellite initial conditions and the spherical harmonics

coefficients. A 180×180 spherical harmonic expansion is described by 32,760 coefficients,

so for this case the state vector has a total length of 32,772. The twelve satellite state

parameters are arc parameters, meaning they are estimated for each one-day arc. The

spherical harmonic coefficients are global parameters, and are common to all of the arcs

for some selected time period, which in this case is one month. At the end of Step 3, the

final satellite state is used as the initial conditions for Step 1 of the next one-day arc,

and the procedure is repeated until the final day of the month with each one-day run

resulting in a separate partial derivative file. Once a full month of partial derivative files
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are formed they are then used to form the normal equations and determine a solution.

Further detail of the spherical harmonic and mascon estimation procedures is presented

in Sections 3.4.4, and 3.4.5 respectively.

The final step of the simulation procedure is to sum and then solve the normal

equations for each month. This results in the gravity solution for that month. The

SOLVE software package combines the normal equations from all of the one-day arcs

and solves the linear system. As discussed in Section (3.3), SOLVE utilizes Cholesky

decomposition to compute the inverse of the large information matrix, and determine

the best estimate of the state deviation vector, x̂.

3.4.2 General Acceleration Parameter Estimation

The numerical simulation procedure includes the estimation of a set of general ac-

celeration parameters for each one-day arc. The estimation of these parameters reduces

the errors associated with the accelerometer which is described in Section 4.3. As that

section shows, the inclusion of the accelerometer errors into the range-rate observation

results in large errors, especially at the one cycle-per-revolution frequency. The RMS of

the range-rate observation residuals is greatly reduced with the estimation of the general

acceleration parameters and significantly improves the resulting gravity solutions.

The satellite perturbations in the radial, transverse, and normal directions can

be described by:

FT = CT cos u + ST sin u + kT T̂

FN = CN cos u + SN sin u + kN N̂ (3.23)

FR = CR cos u + SR sin u
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where

FT = transverse general acceleration

FN = normal general acceleration

FR = radial general acceleration

u = argument of latitude of satellite

CT , ST = 1-cpr transverse acceleration parameter

CN , SN = 1-cpr normal acceleration parameter

CR, SR = 1-cpr radial acceleration parameter

kT = constant transverse parameter

kN = constant normal parameter

T̂ = unit velocity vector

N̂ = unit vector in normal direction (r × v)

The sum of the sin and cos terms in Eq. (3.23) describe the one cycle-per-revolution

acceleration in each direction, and the k terms describe the constant acceleration. A

constant term, k, could also be estimated in the normal direction but simulations showed

that its inclusion slightly degrades the gravity solutions.

Each of the above eight general acceleration parameters (C, S, and k terms), are

estimated by GEODYN once per hour, resulting in a total number of 384 estimated

parameters per arc. Each parameter is assigned a correlation time, affectively reducing

the number of estimated parameters, since the parameters within a given time period are

forced to remain close together in value. The transverse terms are assigned a correlation

time of three hours (approximately two satellite revolutions), and the radial and normal

terms are assigned a correlation time of twenty-four hours.
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3.4.3 Orbit Refinement With Baseline Parameterization

This section summarizes the orbit refinement procedure developed by Rowlands

[2002]. This method assumes that the orbit of the satellite has already been well de-

termined with the use of GPS satellite position data. The final step in the gravity

estimation procedure then involves the simultaneous estimation of the gravity field and

a refined satellite state with a baseline parameterization using the satellite-to-satellite

range-rate data only. In applying this method, the twelve satellite state parameters

in Cartesian space are converted to a baseline parameterization, where the new state

parameters are:

P1 - distance of baseline midpoint from the Earth’s center of mass

P2 - declination of baseline midpoint

P3 - right ascension of baseline midpoint

P4 - inertial X component of baseline midpoint velocity

P5 - inertial Y component of baseline midpoint velocity

P6 - inertial Z component of baseline midpoint velocity

P7 - baseline vector length

P8 - baseline vector pitch

P9 - baseline vector yaw

P10 - baseline rate-of-change vector pitch

P11 - baseline rate-of-change vector pitch

P12 - baseline rate-of-change vector yaw.

Simulations in [Rowlands et al., 2002] show that good solutions are found by

estimating the parameters P8, P10 and P11, while holding the values of the other nine

parameters fixed. This method is used throughout this work and is implemented using

SOLVE in the final step of the gravity estimation procedure.
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This technique provides a few advantages as compared to the simultaneous es-

timation of the full satellite state and the gravity field. The final gravity estimation

step is less computationally intense due to the fact that only the satellite-to-satellite

range-rate data are needed, whereas estimating gravity and the satellite state requries

both the range-rate and GPS satellite position data. This method then takes advantage

of the fact that the range-rate measurements are many orders of magnitude more accu-

rate than the position measurements provided by GPS. Additionally, since the orbit is

refined and not fully determined, it is possible to use this method in short-arc analysis,

which is beneficial in a real mission scenario where there may be time periods when no

data are available.

3.4.4 Spherical Harmonic Estimation

The normal equation of Eq. (3.17) may be directly formed by the observation

partial derivative files output from Step 3 in Section 3.4.1, since the observation partials

written by GEODYN are with respect to the spherical harmonic parameters. The

dimension of the state vector is quite large for a high spherical harmonic expansion. A

spherical harmonic expansion to degree and order 60 is described by 3,717 parameters

while an expansion to degree and order 180 consists of 32,760 parameters. The number

of spherical harmonic parameters is the size of α in the state vector of Eq. (3.5).

The value n which describes the size of the n×n information matrix is the sum of the

length of α and the twelve satellite state parameters per arc. Due to the large size of

the information matrix for a high spherical harmonic expansion, significant computing

power is needed to form and solve the normal equations for each month. The length of

the m×1 observation deviation vector y is 17,280 (the number of range-rate observations

per day) multiplied by the number of one-day arcs in the month.

61



3.4.5 Mascon Parameter Estimation

To generate a mascon solution, the partial derivatives output from Step 3 of

Section 3.4.1, which make up the H matrix of the normal equation, are converted

to mascon space using Eq. (2.19). The normal equation is then formed and solved

to determine the mascon parameter estimates. The length of the α portion of the

state vector is drastically reduced as compared to spherical harmonic estimation, thus

significantly reducing the size of the information matrix that is inverted to form the

solution. A 180×180 spherical harmonic expansion is described by 32,760 parameters

while a mascon representation of the Greenland region with a similar spatial resolution

(1◦×1◦ blocks) contains 2,775 parameters. This large reduction in the size of the linear

system significantly reduces the computation time needed to solve the normal equation.

Throughout this work, all mascon solutions are formed using 1◦ × 1◦ blocks. As

described in Section 2.4.2 the mascon solutions are unstable without the application of

constraints. The introduction of constraint matrices into the linear system, as calcu-

lated from Eq. (2.20), is mathematically equivalent to the inclusion of a a priori data

weighting matrix W in the normal equation.

In the case of a simulation study, the true answer is perfectly known, so the

estimates can always be compared to the truth to determine the exact level of error

for each solution. For this study, the weights placed on the constraint matrices can be

selected such that an optimal solution is achieved. The best-case solution is defined

as the one which minimizes the RMS of the error map. Simulations show that a good

starting point for the constraint matrix weight is the inverse of the average of the

diagonals of the mascon portion of the information matrix (the information matrix is

the inverse of the covariance matrix). Some improvement in the results is observed
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with an up-weighting of the constraints on the ocean mascons as compared to the land

mascons, effectively forcing the oceans to remain close to a zero value and placing most

all of the estimated signal over the land (which is where the truth signal is located). The

mascon solutions formed in this study do not apply temporal constraints, meaning that

the monthly solutions are not constrained to each other. Several different constraint

scenarios are explored to determine the effect of the constraints on the solutions, and

to select the best case setup for forming accurate mascon solutions.

Mascon solutions are formed for Greenland and South America. Table 3.2 sum-

marizes the location information of the mascon solutions for each region.

Greenland South America

Minimum latitude 52◦ −35◦

Maximum latitude 89◦ 17◦

Minimum longitude 280◦ 274◦

Maximum longitude 355◦ 334◦

Total number of mascons 2775 3120

Number of land mascons 654 1347

Number of ocean mascons 2121 1773

Table 3.2: Mascon definitions.

3.5 Mission Orbital Parameters

The final step in the simulation procedure is the selection of the mission orbital

parameters. The determination of the orbital parameters will be an important part of

the design for a GFO as it affects the mission performance. It is assumed here that

a GFO will be placed in a near-polar, near-circular orbit as with GRACE, since these

conditions are needed to provide consistent global coverage.

Of primary importance for the mission design will be the satellite altitude. Due

to the attenuation of the gravity signal with increasing altitude it is desired to fly a GFO

63



in as low an orbit as possible. As the altitude decreases the forcing from atmospheric

drag significantly increases, increasing the required thrust capabilities to maintain the

orbit or to implement a drag-free system. The selection of the spacecraft separation

distance will also be an important part of the mission design. The separation distance

affects the level of instrument noise as well as the ability of the mission to recover the

gravity signal at various wavelengths. Lastly, the groundtrack of the mission is of great

importance as global coverage is needed to generate global gravity estimates.

In this work two orbital configurations are considered. First, the current GRACE

orbital parameters are used. In this configuration the satellites have an altitude of ∼480

km and a spacecraft separation of ∼220 km. Second, a possible GFO configuration is

used, in which the satellites are flown at an altitude of ∼250 km with a spacecraft

separation of ∼50 km. Both orbits provide good global coverage every thirty days. The

groundtrack spacing for thirty days is ∼1 degrees for the 480 km altitude orbit and

∼0.8 degrees for the 250 km altitude orbit. Table 3.3 summarizes the different orbital

configurations and Figure 3.9 shows the groundtracks for the two configurations over

South America and Greenland.

480 km altitude 250 km altitude
220 km separation 50 km separation

a 6860.813 km 6632.876 km

e 1.36 × 10−4 1.15 × 10−5

i 89.015◦ 89.458◦

Table 3.3: Mission orbital parameters summary.
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(a) 3 days (b) 10 days (c) 30 days

Figure 3.9: Groundtracks over South America and Greenland for the two different mis-
sion orbital parameters considered in this study. The top two rows show groundtracks
for the 480 km altitude orbit and the bottom two rows show the 250 km altitude orbit.
The columns show the groundtracks for (a) 3 days, (b) 10 days, and (c) 30 days.

65



It is worth noting that the groundtracks attain similar coverage after 30 days, but

have very different coverage when considered over shorter time spans. As the plotted

groundtracks show, the lower altitude orbit fills in much closer together than the higher

altitude orbit. This is due to the fact that at ∼250 km altitude, the orbit is very near to

a 1-day repeating groundtrack. This groundtrack would not be well suited for estimating

global gravity estimates at time scales shorter than a month due to the inhomogenous

coverage over shorter times. The simulation results show that the size of the temporal

aliasing errors for the regional mascon estimates is affected by the groundtrack coverage

and the satellite altitude.
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Chapter 4

Sources of Error

4.1 Introduction

This chapter presents in detail the major error sources which must be included

in the numerical simulations to achieve realistic results. The work given in this chapter

comprises a major portion of this research, as computing realistic representations of all

significant sources of error is a difficult task, and requires a great attention to detail.

The sources of error presented in order are: the inter-satellite measurement errors, the

accelerometer errors, the satellite positioning errors, and the temporal aliasing errors.

The chapter concludes with a summary of the GRACE and GRACE follow-on mis-

sion configurations, which are defined by a combination of the selected satellite orbital

parameters from Section 3.5, and the appropriate error sources as determined by the

selected on-board instruments as described in this chapter.

4.2 Inter-satellite Measurement Errors

A main goal of this work is to investigate the effects of an improved ranging

device on the performance of a GRACE Follow-On mission. It is expected that a GFO

with more accurate ranging measurements would improve the spatial resolution of the

gravity estimates.
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System noise is often described in terms of a power spectral density (PSD), or the

amplitude spectral density (ASD) where the ASD is equal to the square-root of the PSD

(from this point forward the PSD1/2 will simply be referred to as the spectral density).

The spectral density plots describing the noise for GRACE and GFO are presented in

this section. For more detail on spectral densities refer to Appendix C.

4.2.1 GRACE

The spectral density of the satellite-to-satellite ranging measurement noise is given

by 1.8 µm/
√

Hz [Bettadpur , 2007]. The numerical simulations in this work use satellite-

to-satellite range-rate tracking data so the spectral density must be converted from range

to range-rate. Differentiation in the time domain is equivalent to multiplication of 2πf

in the frequency domain. The spectral density for the range-rate error is then given by

1.8 · 2πf µm/s/
√

Hz. The error budgets for GRACE in terms of range and range-rate

are shown in Figure 4.1.

The instrument error is considered over frequencies of 10−4 Hz to 10−1 Hz. The

highest frequency which can be sampled is called the Nyquist frequency and is equal to

1/(2∆t) where ∆t is the sampling rate. For the simulations in this study a sampling

rate of 5 seconds is used, making the Nyquist frequency equal to 10−1 Hz.

In order to include the satellite-to-satellite tracking error into the numerical simu-

lations the spectral density is converted into a time series of range-rate errors by taking

the inverse Fourier transform of the range-rate spectral density as given by Eq. (B.4).

Refer to Appendix B for a detailed explanation of the procedure. The resulting RMS

of the simulated GRACE range-rate errors is ∼ 0.21 µm/s.
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Figure 4.1: Spectral densities for GRACE satellite-to-satellite measurement error. The
blue line is range and the green line is range-rate.

4.2.2 GRACE Follow-On

Detailed mathematical representations of the various errors sources which would

affect the GRACE Follow-On satellite-to-satellite measurement errors are available for

this study. The spectral density of errors for the interferometric laser ranging system

developed by Ball Aerospace & Technologies Corp. are detailed in [Pierce et al., 2008].

Most of the components of the error budget were tested and verified by measuring the

actual errors on a brassboard model in the laboratory. The error budget is shown in

Figure 4.2.

As before, the spectral density in terms of range-rate is found by multiplying each

term by 2πf . A time series of range-rate errors is then found for each error source. The
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Figure 4.2: Spectral density for interferometric laser ranging system with a spacecraft
separation distance of 50 km.

resulting time series are then summed to generate the total range-rate error time series.

The RMS of the simulated GFO range-rate errors is ∼ 0.58 nm/s

4.3 Accelerometer Errors

Each of the GRACE satellites is equipped with an accelerometer. The accelerome-

ters measure the electrostatic force required to hold the position of a proof mass constant

with respect to the satellite, where the proof mass is located at the center-of-mass of

the spacecraft. The satellite and the proof mass are affected by the same gravitational

forces but the proof mass is not affected by the non-gravitational forces which act on the

outside of the satellite. The accelerometer data are then used to differentiate between

the gravitational and non-gravitational forces which act on each satellite, meaning that
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errors in the accelerometer measurements corrupt the GRACE gravity estimates and

must be considered.

For this work, the accelerometer error is included in the numerical simulations by

calculating its effect on the range-rate error. The mathematical procedure which deter-

mines the accelerometer error is given in the appendices. A simplified equation which

describes the effect of perturbed motion on the range-rate is developed in Appendix

D. This equation is then applied to Hill’s equations in Appendix E to determine the

spectral density function that describes the accelerometer error effect on the range-rate

errors.

Table 4.1 gives the spectral density of the accelerometer errors for the three satel-

lite axes. The normal satellite direction was chosen as the least sensitive accelerometer

axis for GRACE because errors in the normal direction have the smallest affect on the

satellite-to-satellite range-rate measurements [Kim, 2000].

Direction PSD1/2

Radial (1 + 0.005/f)1/2 × 10−10m/s2/Hz1/2

Transverse (1 + 0.005/f)1/2 × 10−10m/s2/Hz1/2

Normal (1 + 0.1/f)1/2 × 10−9m/s2/Hz1/2

Table 4.1: Spectral density of accelerometer errors for satellite axes.

Figure 4.3 shows the spectral density of the range-rate error due to errors in the

accelerometer as calculated by Eq. (E.6). A strong spike in the spectral density function

is present at the one cycle-per-revolution frequency. As in the previous section, the time

series of range-rate error is found by taking the inverse Fourier transform of the spectral

density. This resulting time series is then added to the satellite-to-satellite range-rate

error time series from Section 4.2 to form the final time series of range-rate errors as

plotted in Figure 4.4. The combined error time series is clearly dominated by errors at
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the one cycle-per-revolution frequency and has an RMS of ∼ 1.29 µm/s.
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Figure 4.3: Spectral density of range-rate error due to accelerometer error.
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Figure 4.4: Time series of range-rate errors.
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The errors associated with the gravitational reference sensor are already included

in the error budget for the laser ranging system described in Section 4.2.2, so the process

described in this section does not apply to the drag-free simulation cases.

4.4 Satellite Positioning Errors

The gravity estimation procedure requires that the satellite orbits are accurately

determined. For GRACE, the orbits are usually determined using a dynamic orbit

determination method which combines GPS tracking data with orbital dynamics. This

method seeks to optimally weight the geometric (GPS) information with the dynamic

(force models) information to simultaneously estimate the orbit and adjust the force

models. The orbit accuracy is then dependent on errors in the GPS measurements and

the force models used in the procedure.

The accuracy of the final orbits is not central to this study, but the GPS mea-

surement error must be taken into account for the numerical simulations since errors in

the satellite position degrade the gravity solutions. According to Kang [2006] the GPS

tracking data for GRACE orbit determination has a precision of ∼ 1.0 cm.

The effect of the GPS tracking errors is introduced into the simulations by adding

a Gaussian white noise with σ = 1.0 cm to the simulated truth position vectors in all

three axis directions. The resultant time series of satellite position errors has an RMS

of ∼ 1.74 cm, which is slightly pessimistic as compared to the results of Kang [2006]. A

one-day time series and the corresponding histogram of the satellite position errors are

shown in Figure 4.5.
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Figure 4.5: One-day time series and histogram of satellite position errors. RMS =
∼ 1.74 cm.

4.5 Temporal Aliasing Errors

Temporal aliasing errors exist when a sampled signal has a higher frequency than

the rate at which it is sampled. For GRACE, aliasing errors exist because water mass

changes from atmospheric, oceanographic, tidal, and hydrologic signals occur at time

scales of a few hours, while GRACE gravity solutions are usually formed about once

per month. A number of studies have shown that the problem of temporal aliasing is a

major source of error for GRACE [Encarnacao et al., 2009; Moore and King , 2008; Seo

et al., 2008b,a; Ray and Luthcke, 2006; Han et al., 2004; Thompson et al., 2004]. This

error is introduced into the simulations by using a different set of Truth and Nominal

models as explained in Section 3.2.

The work of Seo et al. [2008a] identifies two different types of temporal aliasing

errors. Aliasing caused by mis-modeling of the oceanic and atmospheric signals produces

large errors in the resonant spherical harmonic orders as described by Kaula [2000]. For

the GRACE groundtrack this occurs around spherical harmonic order multiples of 15.
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This type of aliasing is also largely responsible for the correlated pattern that exists

between even and odd degrees for a given order. This correlation was observed by

Swenson and Wahr [2006b], and causes north-south striping in the GRACE gravity

solutions. The second type of observed aliasing is caused by tide model error. This

type is mostly present in the low degree spherical harmonic terms and has long aliasing

periods.

The problem of temporal aliasing is illustrated by Figure 4.6. The black line

represents the high-frequency mass changes and the blue dots are the times at which

the signal is sampled. The dashed black line is the true mean of the signal and the

dashed blue line shows the estimated mean, as determined by the data samples. There

is a clear difference between the true mean and the estimated mean caused by the under

sampling of the data. Here the black line could represent the errors in the AOD and

tide models used to remove unwanted signal, or the time-variable signal to be estimated

(e.g. GLDAS).
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Figure 4.6: Illustration of temporal aliasing error.
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Errors in the atmospheric, oceanic, and tidal models have a spatial dependence

due to limitations in the availability and quality of the data that is used to form the

models. This non-uniform character of the model errors causes the temporal aliasing

errors to be dependent on the satellite groundtrack, and the location for which the

gravity signal is estimated. The spatial characteristics of the AOD model errors are

presented in Figure 4.7. The plot shows the spatial RMS of the difference between

the Truth ECMWF/OMCT and the Nominal NCEP/MOG2D AOD models for twelve

monthly means. Figure 4.8 shows the same information as Figure 4.7, except that the

plots are focused on South America and Greenland. Since the AOD model errors are

larger over Greenland, the temporal aliasing errors caused by imperfections in the AOD

models will be greater for Greenland than South America.

Figure 4.7: Global AOD model error RMS about the mean calculated with twelve
monthly means (ECMWF/OMCT minus NCEP/MOG2D).
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Figure 4.8: South America and Greenland AOD model error RMS about the mean
calculated with twelve monthly means. (ECMWF/OMCT minus NCEP/MOG2D).

4.6 Summary of GRACE and GFO Mission Configurations

The numerical simulations are performed for four different mission configurations

and are summarized in Table 4.2.

Mission Altitude / Range-rate Removal of non-
satellite separation noise conservative forces

GRACE 480 km / 220 km K-band On-board accelerometer

GFO Case 1 480 km / 220 km Laser On-board accelerometer

GFO Case 2 250 km / 50 km K-band GRS (drag-free)

GFO Case 3 250 km / 50 km Laser GRS (drag-free)

Table 4.2: Summary of gravity mission configurations.

Simulating the performance of GRACE and three different GRACE Follow-On

missions will determine the effects of the various error sources on the gravity solutions.

Clearly, GFO Case 3 is a best-case scenario for a GRACE Follow-on gravity mission,

as it flies in the lower altitude, and reduces both the range-rate and accelerometer

errors. This mission would be more expensive to fly than the other considered GFO
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missions, so it is unlikely that a GFO Case 3 mission would be realized in the near

future. GFO Case 1 and GFO Case 2 are essentially hybrid missions, which combine

new and heritage technologies. The simulation results should inform whether the budget

of a future gravity mission would be better spent on a lower altitude combined with a

drag-free system or on a laser ranging system.
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Chapter 5

Simulation Results and Error Analysis

5.1 Introduction

This chapter contains the results of all numerical simulations. In order to main-

tain consistency, prior to analyzing the gravity estimates, all of the mascon solutions

are converted to a set of spherical harmonics. This is necessary to perform the best

comparison between the input truth signal and the estimates since the truth signal is

defined by a set of spherical harmonics.

As is the convention for GRACE gravity data, results are given as a time series

of spatial maps and as a time series of mass changes for a given location. Estimates

of the trend, amplitude of the annual signal, and phase are calculated from the mass

change time series. For a simulation study the truth is perfectly known, so the estimates

may be directly compared to the truth to determine the exact level of error. Several

modes of comparison are explained in Section 2.6, and are used throughout this chapter.

Simulation results are presented for four different mission configurations: GRACE, and

GFO cases 1, 2, and 3 which are summarized in Section 4.6.

The Truth gravity plots to which the results of this chapter are compared are

shown in Figure 3.4 and Figure 3.7.
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5.2 Basin Definitions

As previously discussed in Section 1.2, GRACE data are often used to calculate

mass variations within some defined region, and has specifically been used to monitor

water mass changes for different basins in South America and Greenland. The same

principles are applied to the simulated gravity estimates to determine the ability of each

mission configuration to monitor the mass change signal for a number of different basins

that are defined below.

For a mascon solution, the total mass within a given region is determined by

simply summing the mascons within the region. For a spherical harmonic solution the

total mass inside a region is calculated with an averaging kernel (see Section 2.5), and is

used in this study to measure the mass changes within each basin for spherical harmonic

solutions. Swenson and Wahr [2002] discuss techniques that minimize the error when

using averaging kernels. Since the true solution is known, the averaging kernels for

each basin can be optimized by adjusting the parameters that define the kernel, so

that the estimates most closely match the solution. The design parameters for the

averaging kernel are the variable ϑ(φ, λ) in Eq. (2.21), which defines the location of the

exact averaging kernel, and r1/2 from Eq. (2.32), which defines the level of Gaussian

smoothing applied to the kernel.

It is sometimes a good idea to expand the size of ϑ(φ, λ), so that the transition

from a value of one inside the basin to zero outside the basin, occurs mostly outside

of the basin. This is especially important for averaging kernels for Greenland as the

majority of the signal is located near the coast. Three different averaging kernels are

tested on the spherical harmonic results of Section 5.7 to determine the best possible

kernel for recovering the mass within each basin. These are: 1.) the exact basin, 2.)
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the exact basin expanded by one degree blocks, and 3.) the exact basin expanded

by two degree blocks. The values of r1/2 are simultaneously varied to determine the

optimal averaging kernel for each basin. For the Truth spherical harmonics, and the

mascon estimates converted to harmonics, the exact averaging kernel for the exact basin

location is used to determine all basin mass values.

5.2.1 South America

The South American basin definitions used in this study are taken from data at

<http://www.r-hydronet.sr.unh.edu/grids/networks/sa.html> and are shown in Figure

5.1 along with the corresponding surface areas for each basin.

5.2.2 Greenland

The basin definitions for Greenland are approximately the same as those used by

Luthcke et al. [2006]. Basins 1 through 6 have an elevation below 2000 m, while basins

7 through 12 have an elevation above 2000 m. The 2000 m elevation cutoff corresponds

to the locations in the constructed Truth signal that define the amplitude of the annual

signal (see Figure 3.6). Figure 5.2 shows the locations and surface areas of the basins.
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Basin Surface Number
number Area (km2) of mascons

1 (Amazon) 6.0856 ×106 497

2 (Parana) 2.5516 ×106 223

3 (Orinoco) 1.0720 ×106 87

4 (Tocantins) 7.7670 ×105 64

5 6.1403 ×105 51

6 3.5660 ×105 29

7 2.5826 ×105 21

8 1.7273 ×105 14

Figure 5.1: Location and size of South America basins.
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Basin Surface Number of
number Area (km2) mascons

1 2.0752 ×105 99

2 2.2534 ×105 104

3 1.7889 ×105 46

4 1.0992 ×105 20

5 1.9494 ×105 40

6 1.4956 ×105 44

7 1.0332 ×105 42

8 1.9097 ×105 68

9 1.9137 ×105 51

10 1.4674 ×105 30

11 1.9638 ×105 42

12 2.3570 ×105 68

Figure 5.2: Location and size of Greenland basins.

83



5.3 Mascon Estimation Methods

The mascon gravity estimation technique allows for more flexibility than spherical

harmonic estimation. The mascons can be constructed into any size and shape, and the

constraint equations written between mascons can be set up to reflect the expected

correlation in their signals. The results in this section show the effect of different

constraint scenarios on the solutions. The method which yields the most accurate results

is then used to determine the best case solutions for the four mission configurations in

Sections 5.4 and 5.5. Simulations in this section are for GFO Case 3 where all error

sources are included.
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5.3.1 1◦ × 1◦ Mascon Grid: One Constraint Matrix

The results for the one constraint matrix scenario are presented here. For this

case all of the mascons are constrained to each other. Figure 5.3 shows the spectral

density of the monthly spatial maps, their mean, and the mean of the Truth. The power

of the estimate is underestimated at lower degrees due to the applied constraints, and

the fact that the ocean and land mascons are constrained to each other.
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Figure 5.3: Spectral density of spatial maps in (a) Figure 5.4 and (b) Figure 5.5.
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Figure 5.4: South America gravity estimates for one constraint matrix.
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Figure 5.5: Greenland gravity estimates for one constraint matrix.

87



5.3.2 1◦ × 1◦ Mascon Grid: Separate Land and Ocean Constraints

The scenario now presented applies separate constraints to the land and ocean

mascons, and is implemented by constructing two separate constraint matrices. Once

again, the power of the signal is underestimated at lower degrees, but not as much as it

was for the previous case. The weight of the constraints could be adjusted to improve

the power of the estimate, but this results in a higher RMS of the error map.
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Figure 5.6: Spectral density of spatial maps in (a) Figure 5.7 and (b) Figure 5.8.
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Figure 5.7: South America gravity estimates for separate land and ocean constraints.
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Figure 5.8: Greenland gravity estimates for separate land and ocean constraints.
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5.3.3 Uncorrelated Basin Mascons

The results presented here are for a set of uncorrelated basin mascon estimates.

This is implemented by only constraining mascons to each other that are within the

same basin. For this scenario the number of constraint matrices is equal to the number

of basins over the land, plus one for the ocean. This is effectively the same as solving

for a small number of uncorrelated mascons which are defined by the basins.
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Figure 5.9: Spectral density of spatial maps in (a) Figure 5.10 and (b) Figure 5.11.
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Figure 5.10: South America gravity estimates for uncorrelated basins.
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Figure 5.11: Greenland gravity estimates for uncorrelated basins.
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5.3.4 1◦ × 1◦ Mascon Grid: Greenland Elevation Constraints

The constraint scenario applied in this section only applies to the Greenland

gravity estimates. As previously described, a benefit of the mascon approach is to set

up the constraints such that mascons whose signals are uncorrelated are not constrained

to one another. The Truth signal for mass change over Greenland has a sharp dividing

line at 2000 m elevation defining the size of the amplitude of the annual signal. Mascons

which neighbor each other across this line are constrained to each other for the results of

Sections 5.3.1 and 5.3.2, even though they are known to have very different geophysical

signals. This provides an opportunity to determine whether properly assigned additional

constraints can improve the accuracy of the gravity solutions. The results in this section

introduce an additional constraint matrix from Section 5.3.2, so that only mascons

within the same elevation range (above or below 2000 m) are constrained to each other.
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Figure 5.12: Spectral density of spatial maps in Figure 5.13.
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Figure 5.13: Greenland gravity estimates for elevation constraint scenario.
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5.3.5 Comparison of Mascon Constraint Scenarios

The results obtained from the different mascon constraint scenarios are compared

by measuring the mass variations within each basin as calculated by each constraint

scenario. The time series for South America and Greenland basin mass changes are

presented in Figure 5.14 and Figure 5.15 respectively. Tables 5.1 and 5.2 show the

corresponding error RMS values for the basin mass estimates.

The gravity estimate plots of Figures 5.4 and 5.5 and the mass change time series

show that the one constraint only case results in a rather smoothed gravity estimate

as compared to the other approaches. Since for this case there is no differentiation in

how the mascons are treated, the signals over the land and ocean mascons leak into

each other. This causes the one constraint matrix case to underestimate the signal for

mascons located near the coast. This explains why the mass change estimates for the

Amazon and Parana basins are good, as these basins are large in size and most of the

signal is not located near the coast. This constraint case also clearly underestimates the

amplitude of the signal for the coastal Greenland basins (1-6) as compared to the other

cases.

The case where the land and ocean mascons are constrained separately provides

clear improvement in the mass change estimates for basins located near the coast for

both South America and Greenland as compared to the one constraint matrix case.

For South America, this case provides the lowest error RMS for most of the basins,

and the RMS values are not significantly higher for cases where it is not the lowest.

This mascon constraint setup is clearly the best option for forming the South America

mascon solutions.
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Figure 5.14: South America basin mass variations time series for different mascon con-
straint scenarios.

Basin Truth One constraint Land/ocean Uncorrelated
signal RMS matrix constraint basins
(cm of water) error RMS error RMS error RMS

(cm of water) (cm of water) (cm of water)

1 6.222 0.979 1.048 1.674

2 5.459 1.960 1.623 1.123

3 6.705 2.193 1.268 3.181

4 13.609 4.515 3.583 5.483

5 9.076 3.333 1.883 5.241

6 11.844 3.985 2.309 6.930

7 3.790 1.905 1.810 3.395

8 8.907 3.484 3.579 13.166

Table 5.1: RMS of errors for South America basin mass estimates for different mascon
constraint scenarios shown in Figure 5.14.
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Figure 5.15: Greenland basin mass variations time series for different mascon constraint
scenarios.

98



Basin Truth One constr. Land/ocean Uncorrelated Elevation
signal RMS matrix constraint basins constraints
(cm of water) error RMS error RMS error RMS error RMS

(cm of water) (cm of water) (cm of water) (cm of water)

1 16.513 7.553 4.356 5.746 2.699

2 16.306 7.686 3.905 3.365 2.337

3 20.708 11.231 7.731 6.795 5.544

4 24.937 13.483 8.157 8.891 8.131

5 17.647 9.074 7.262 5.876 3.196

6 20.325 12.505 9.235 11.321 6.838

7 5.145 4.489 4.667 6.938 2.605

8 3.628 4.179 4.376 2.538 3.387

9 7.241 3.057 4.480 8.459 2.028

10 14.295 3.969 5.190 13.972 4.758

11 4.258 7.861 8.102 11.823 5.910

12 4.496 3.994 4.832 7.888 2.833

Table 5.2: RMS of errors for Greenland basin mass estimates for different mascon
constraint scenarios shown in Figure 5.15.

The uncorrelated basins setup results in estimates with much larger mass varia-

tions than the previous two cases. The mass change time series and error RMS values

reveal that this is clearly not a good option for forming the solutions. Simulations

(results not presented) showed that these large errors are primarily the result of a mag-

nification of the temporal aliasing error.

The elevation constraint setup for Greenland results in the most accurate gravity

estimates. The error RMS is lowest for this case for eleven out of the twelve basins, and

the mass change time series show that the elevation case more accurately determines the

amplitude of the signal for almost every basin. The results of this scenario confirm that

the mascon approach can be setup to account for the fact that certain mascons should

or should not be constrained to each other based on the geophysical signals occurring

within their boundaries. The Truth signal for Greenland in these simulations has large

difference for neighboring mascons which are divided by the 2000 m elevation line.
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For the one constraint matrix and the separate land and ocean constraint cases, these

neighboring mascons are constrained to each other. This causes the neighboring signals

to leak, which is evident in the fact that the gravity signals within the coastal basins (1-

6) are underestimated while the signals for the interior basins (7-12) are overestimated

for these cases. The elevation constraint approach eliminates this problem which results

in much improved gravity estimates.

The results presented in the following two sections utilize the separate land and

ocean constraints case for forming the South America gravity solutions and the elevation

constraints for forming Greenland solutions.

5.4 Simulated Gravity Estimates: Instrument Noise Only

The results presented in this section are for the instrument noise only case. These

simulations account for the satellite-to-satellite ranging instrument errors, the satellite

positioning errors, and the accelerometer or GRS errors only. The results given here

ignore the temporal aliasing errors caused by mis-modeling of the atmospheric, oceano-

graphic, and tidal models so the accuracy of the gravity estimates will be optimistic.

The results here are instructional, however, as they provide valuable information of the

effects of the different instruments on board the various simulated missions. Temporal

aliasing errors will still be present in the South America gravity estimates due to the

high frequency variations in the hydrology signal that is estimated at monthly intervals.

Aliasing from the atmosphere, oceans, and tides are added to the simulations in Section

5.5.
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5.4.1 South America

Spatial maps of the gravity estimates for the noise only case over South America

are given on the following pages. The results for GRACE, GFO Case 1, GFO Case

2, and GFO Case 3 are shown in Figures 5.16, 5.17, 5.18, and 5.19 respectively. The

gravity estimates for GRACE and GFO Case 1 appear to be nearly identical, as do the

estimates for GFO Case 2 and GFO Case 3.
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Figure 5.16: South America gravity estimates for GRACE (480 km altitude / K-band
/ Accelerometer): instrument noise only.
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Figure 5.17: South America gravity estimates for GFO Case 1 (480 km altitude / Laser
/ Accelerometer): instrument noise only.
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Figure 5.18: South America gravity estimates for GFO Case 2 (250 km altitude / K-
band / GRS): instrument noise only.
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Figure 5.19: South America gravity estimates for GFO Case 3 (250 km altitude / Laser
/ GRS): instrument noise only.
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5.4.2 Greenland

The Greenland gravity estimate maps for the noise only case are plotted on the

following pages. Results for GRACE, GFO Case 1, GFO Case 2, and GFO Case 3 are

shown in Figures 5.20, 5.21, 5.22, and 5.23 respectively. As was the case for the South

America simulations, the gravity estimates for GRACE and GFO Case 1 look identical,

while the GFO Case 2 and GFO Case 3 results show only slight differences.
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Figure 5.20: Greenland gravity estimates GRACE (480 km altitude / K-band / Ac-
celerometer): instrument noise only.
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Figure 5.21: Greenland gravity estimates GFO Case 1 (480 km altitude / Laser /
Accelerometer): instrument noise only.
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Figure 5.22: Greenland gravity estimates for GFO Case 2 (250 km altitude / K-band /
GRS): instrument noise only.
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Figure 5.23: Greenland gravity estimates for GFO Case 3 (250 km altitude / Laser /
GRS): instrument noise only.
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5.4.3 Comparison of Mission Configurations

5.4.3.1 South America

The spatial RMS of the errors for each monthly gravity estimate for the four

simulated missions is plotted in Figure 5.24. The mean of the 25 monthly RMS values

for each mission is given in Table 5.3. These results show that there is essentially

no difference between the GRACE and GFO Case 1 mission performance, and the

GFO Case 2 and GFO Case 3 mission performance for recovering the time-variable

GLDAS hydrology signal over South America for the instrument noise only case. Due

to similarities in performance to the other missions, only the results for GRACE and

GFO Case 3 are considered for the remainder of this subsection.
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Figure 5.24: RMS errors of South America spatial maps for all mission conifigurations:
instrument noise only case.
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Mission RMS
Configuration (cm of water)

GRACE 3.44

GFO Case 1 3.44

GFO Case 2 2.78

GFO Case 3 2.77

Table 5.3: Mean of monthly RMS of 25 South America spatial plots for instrument
noise only case.

The mean spectral density of the monthly spatial South America maps for the

Truth signal and the GRACE and GFO Case 3 errors are plotted in Figure 5.25. There

is a noticeable improvement for GFO Case 3 at the spatial frequencies described by

harmonic degrees 18 to 42, while little to no improvement is seen for the lowest and

highest sampled frequencies. At the highest frequencies the power of the errors is

approximately equal to the signal size.
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Figure 5.25: Mean spectral density of monthly spatial maps for the Truth signal and
GRACE and GFO Case 3 error over South America: instrument noise only.

The monthly gravity estimates for GRACE and GFO Case 3 are used to form

time series of mass variations within each of the South American basins and is shown

in Figure 5.26. The error RMS of each time series is given in Table 5.4. The gravity
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estimates for GFO Case 3 have a lower error RMS for seven of the eight basins.

The time series of mass variations are used to estimate a constant, trend, am-

plitude of annual signal, and phase of annual signal for the Truth data set, and the

GRACE and GFO Case 3 estimates. These values are given in Table 5.5. The differ-

ences between the Truth and estimated values for trend and amplitude are plotted in

Figure 5.27. The results show that neither simulated mission is consistently better than

the other at recovering these components of the gravity signal.
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Figure 5.26: South America basin mass variations time series for different mission con-
figurations: instrument errors only.

Basin Truth GRACE GFO Case 3
signal RMS error RMS error RMS
(cm of water) (cm of water) (cm of water)

1 6.222 0.748 0.728

2 5.459 1.254 1.229

3 6.705 1.840 0.752

4 13.609 2.552 2.049

5 9.076 2.625 2.138

6 11.844 2.701 1.810

7 3.790 1.682 2.322

8 8.907 3.242 2.164

Table 5.4: RMS of errors for South America basin mass estimates for different mission
configurations shown in Figure 5.26: instrument errors only.
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Basin Truth GRACE GFO Case 3
Trend Amp Phase Trend Amp Phase Trend Amp Phase
(cm) (cm/yr) (deg) (cm) (cm/yr) (deg) (cm) (cm/yr) (deg)

1 1.12 9.21 10.52 0.31 9.51 9.50 0.39 9.68 9.42

2 -0.95 7.04 27.87 -2.38 5.80 23.21 -2.45 5.77 27.30

3 1.48 8.40 219.58 2.49 5.85 220.43 1.58 7.94 220.37

4 -0.58 19.18 26.41 -1.61 15.83 22.35 -1.09 16.38 25.41

5 3.05 12.48 24.33 2.95 9.25 21.68 2.74 9.76 20.17

6 1.03 15.97 2.28 1.01 12.58 2.63 0.27 13.64 359.07

7 2.19 3.24 195.61 1.33 3.36 194.45 2.27 1.18 219.95

8 4.43 9.69 236.32 1.44 12.64 242.67 2.41 10.46 239.02

Table 5.5: Best fit trend, annual amplitude, and phase values for South America basins:
instrument noise only.
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Figure 5.27: Errors in trend and amplitude estimates for each South America basin for
GRACE and GFO Case 3: instrument noise only.
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5.4.3.2 Greenland

Figure 5.28 shows the RMS errors of the monthly Greenland spatial maps for the

four simulated missions where only instrument errors are included in the simulations.

The mean of the monthly RMS values are given in Table 5.6. The “V” shape in the

time series of monthly RMS values is due to the nature of the Truth gravity signal.

The Truth signal has large linear trends at small spatial scales which are not perfectly

recovered by the simulation. Therefore, the level of error is dependent on the magnitude

of the trend signal, which has the same “V” shape over the 25 month simulation.
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Figure 5.28: RMS errors of Greenland spatial maps for all mission configurations: in-
strument noise only case.

Mission RMS
Configuration (cm of water)

GRACE 5.42

GFO Case 1 5.44

GFO Case 2 3.92

GFO Case 3 2.81

Table 5.6: Mean of monthly RMS of 25 Greenland spatial plots for instrument noise
only case.

As was observed for the South America simulations, the estimates for GRACE
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and GFO Case 1 have nearly the exact same level of error. There is, however, a distinct

difference between the errors of GFO Case 2 and GFO Case 3 showing that the improved

ranging accuracy for GFO Case 3 does provide a benefit in some cases. The reason no

difference is observed between GFO Case 2 and GFO Case 3 for the South America

simulations is due to the hydrologic aliasing which is common to both missions. This

issue is explored further in Section 5.6. Analysis for the remainder of this section

includes results for GRACE, GFO Case 2 and GFO Case 3.

The spectral density of the error maps is given in Figure 5.29. GFO Case 3 shows

the lowest level of error for all sampled spatial frequencies. GFO Case 3 and GFO Case

2 show large reductions in the error at the lowest spatial scales as compared to the

GRACE estimates. The error is approximately equal to the power in the signal near

harmonic degree 120.
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Figure 5.29: Mean spectral density of monthly spatial maps for the Truth signal and
GRACE and GFO Case 3 error over Greenland: instrument noise only.

The time series of mass changes for the Greenland basins are plotted in Figure

5.30 and total mass change is in Figure 5.31. The RMS errors for the various missions

over all basins are given in Table 5.7. GFO Case 3 has the lowest RMS values for nine of
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the twelve basins and for the total Greenland signal, while GRACE has the lowest RMS

for only one of the basins. The time series of mass variations show that the GRACE

signal tends to be much noisier those for GFO Case 2 and GFO Case 3.

Once again, a constant, trend, annual amplitude, and phase are estimated from

the time series of mass variations. The values for the Truth, GRACE, and GFO Case 3

are shown in Table 5.8 and the errors of the trend and amplitude estimates are plotted

in Figure 5.32. Some improvement in the estimates of these time change variables is

observed for GFO Case 3 as compared to GRACE.
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Figure 5.30: Greenland basin mass variations time series for different mission configu-
rations: instrument noise only.
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Figure 5.31: Total Greenland variation time series for different mission configurations:
instrument noise only.

Basin Truth GRACE GFO Case 2 GFO Case 3
signal RMS error RMS error RMS error RMS
(cm of water) (cm of water) (cm of water) (cm of water)

1 16.513 2.087 0.793 0.592

2 16.306 2.767 1.045 1.397

3 20.708 3.904 1.803 1.612

4 24.937 3.293 1.653 1.426

5 17.647 5.149 3.040 1.781

6 20.325 5.328 2.226 1.459

7 5.145 3.090 1.622 1.105

8 3.628 1.961 0.605 0.347

9 7.241 1.419 1.846 1.426

10 14.295 5.124 4.152 2.286

11 4.258 5.166 3.231 1.592

12 4.496 1.397 0.600 1.000

Total 11.959 0.875 0.861 0.712

Table 5.7: RMS of errors for Greenland basin mass estimates for different mission
configurations shown in Figure 5.30: instrument noise only.
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Basin Truth GRACE GFO Case 3
Trend Amp Phase Trend Amp Phase Trend Amp Phase
(cm) (cm/yr) (deg) (cm) (cm/yr) (deg) (cm) (cm/yr) (deg)

1 0.13 23.88 0.00 0.50 26.28 1.84 0.24 23.12 0.35

2 -0.39 23.41 0.00 -0.39 26.56 1.58 0.13 21.78 -0.34

3 -18.07 20.44 0.00 -13.84 22.37 2.01 -18.89 18.10 -0.66

4 -27.89 19.35 0.00 -23.41 18.55 -4.28 -30.27 18.95 0.53

5 -4.96 23.61 0.00 -3.59 22.79 -1.24 -2.65 22.79 0.25

6 -14.70 22.24 0.00 -6.83 22.62 2.30 -15.66 20.81 1.33

7 0.04 7.44 0.00 1.18 3.90 -6.90 0.05 6.18 2.65

8 0.97 5.48 0.00 -0.23 2.94 -10.10 1.14 5.53 0.92

9 -7.16 6.47 0.00 -6.22 5.73 -3.80 -5.82 5.76 3.43

10 -19.58 7.12 0.00 -13.25 5.52 -3.78 -15.89 6.95 0.10

11 -0.36 6.03 0.00 -8.59 4.27 -2.92 -2.91 5.62 -1.45

12 -2.48 5.40 0.00 -4.11 3.99 -3.52 -1.99 4.52 -1.33

Table 5.8: Best fit trend, annual amplitude, and phase values for Greenland basins:
instrument noise only.
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Figure 5.32: Errors in trend and amplitude estimates for each Greenland basin for
GRACE and GFO Case 3: instrument noise only.
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5.4.4 Spatial Resolution Study

The simulation results in this section aim to investigate the best attainable spatial

resolution of the gravity estimates for each mission. As discussed earlier, the errors

caused by temporal aliasing are largely dependent on location, so it is not practical to

discuss the spatial resolution of a mission for regional gravity estimation in the presence

of temporal aliasing errors. The simulated gravity estimates given here are for a Truth

signal of 100 cm of water over a 1◦ × 1◦ block at the equator in the Amazon basin,

for instrument errors only. Simulations are performed for 31 days of data for the four

considered mission configurations.

The resulting gravity estimates for all cases are shown in Figure 5.33. As before,

the results for GRACE and GFO Case 1 are indistinguishable from each other. In

addition to the high signal over the 1◦ × 1◦ block at the equator, there are additional

locations where the gravity signal is high. These errors in the estimates are due to the

accelerometer error. A clear difference is observable between the GFO Case 2 and GFO

Case 3 estimates. Due to the higher satellite-to-satellite ranging noise for GFO Case 2,

the gravity field cannot be estimated to as high of a spatial resolution as for GFO Case

3 equipped with the laser. However, GFO Case 2 clearly provides a much less noisy

solution than GRACE and GFO Case 1.

The plotted data in Figure 5.34 shows the recovered mass for each mission within

a series of concentric squares of increasing size. The box sizes and corresponding surface

areas at which the simulated gravity estimates are sampled are given in Table 5.9. The

true amount of mass within a 1◦ × 1◦ block at the equator is 12.39 GT and is included

in the figure. GFO Case 3 performs significantly better than the other missions as it

measures nearly all of the mass within a 3◦×3◦ block. GFO Case 2 performs better than
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the other two missions by recovering more mass within each of the sampled boxes and

all of the approximately all of the mass for a 7◦×7◦ block. The GRACE and GFO Case

1 missions do not recover all of the mass for any size block. Again, this is due to the

effect of the accelerometer errors on the solution. For a different month with a slightly

different groundtrack it would be possible for the GRACE and GFO Case 1 mission to

overestimate the mass within the block, depending on the spatial characteristics of the

accelerometer errors.
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(a) GRACE (b) GFO Case 1

(c) GFO Case 2 (d) GFO Case 3

Figure 5.33: Gravity estimates for 1◦ × 1◦ block of 100 cm of water for different mission
configutations. The location of the Truth signal is shown on each plot.
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Figure 5.34: Mass recovered within a given size block for different mission configurations:
instrument noise only.

Box size Surface
(degrees) Area (km2)

1◦ × 1◦ 1.239 × 104

3◦ × 3◦ 1.115 × 105

5◦ × 5◦ 3.096 × 105

7◦ × 7◦ 6.068 × 105

9◦ × 9◦ 1.002 × 106

11◦ × 11◦ 1.497 × 106

13◦ × 13◦ 2.089 × 106

Table 5.9: Sampled box sizes and surface areas.
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5.5 Simulated Gravity Estimates: All Error Sources

The simulated gravity results presented in this section contain all major error

sources which affect the estimation of time variable gravity. The only change in the

simulations in this section from the previous section is the inclusion of the temporal

aliasing errors caused by the errors in the modeled atmospheric, oceanographic, and

tidal signals.

5.5.1 South America

The spatial maps of the South America gravity estimates for GRACE, GFO Case

1, GFO Case 2, and GFO Case 3 are shown in Figures 5.35, 5.36, 5.37, and 5.38

respectively. Again, the GRACE and GFO Case 1 results look identical to each other,

as do the GFO Case 2 and GFO Case 3 estimates.
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Figure 5.35: South America gravity estimates for GRACE (480 km altitude / K-band
/ Accelerometer): all error sources.
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Figure 5.36: South America gravity estimates for GFO Case 1 (480 km altitude / Laser
/ Accelerometer): all error sources.
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Figure 5.37: South America gravity estimates for GFO Case 2 (250 km altitude / K-
band / GRS): all error sources.
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Figure 5.38: South America gravity estimates for GFO Case 3 (250 km altitude / Laser
/ GRS): all error sources.
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5.5.2 Greenland

Simulated gravity estimates for Greenland for all errors sources for the four mis-

sion setups are shown in Figures 5.39, 5.40, 5.41, and 5.42. As was observed for the

South America all errors case, the Greenland GRACE and GFO Case 1 estimates appear

to be the same, as do the GFO Case 2 and GFO Case 3 estimates.
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Figure 5.39: Greenland gravity estimates for GRACE (480 km altitude / K-band /
Accelerometer): all error sources.
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Figure 5.40: Greenland gravity estimates for GFO Case 1 (480 km altitude / Laser /
Accelerometer): all error sources.
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Figure 5.41: Greenland gravity estimates for GFO Case 2 (250 km altitude / K-band /
GRS): all error sources.
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Figure 5.42: Greenland gravity estimates for GFO Case 3 (250 km altitude / Laser /
GRS): all error sources.
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5.5.3 Comparison of Mission Configurations

5.5.3.1 South America

The results are analyzed using the same statistical tools as before. Figure 5.43

shows the monthly error RMS values of the South America spatial maps for the four

simulated missions where all error sources have been included. As was seen before,

there is no noticeable difference between the GRACE and GFO Case 1 performance,

and between the GFO Case 2 and GFO Case 3 performance. There is also a very minor

performance difference between GRACE and GFO Case 3 with a difference of mean

error RMS of ∼ 0.1 cm of water as shown in Table 5.10. The remaining analysis in this

subsection only considers the results for GRACE and GFO Case 3.
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Figure 5.43: RMS errors of South America spatial maps for all mission configurations:
all error sources.

Mission RMS
Configuration (cm of water)

GRACE 3.95

GFO Case 1 3.95

GFO Case 2 3.81

GFO Case 3 3.82

Table 5.10: Mean of monthly RMS of 25 South America spatial plots for all errors case.
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The spectral density of the error spatial maps shown in Figure 5.44 show that the

spatial characteristics of the errors for the different missions are nearly identical.
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Figure 5.44: Mean spectral density of monthly spatial maps for the Truth signal and
GRACE and GFO Case 3 error over South America: all error sources.

The time series of mass variations for the South America basins are shown in

Figure 5.45 and the corresponding error RMS values are in Table 5.11. As expected

from the previous analaysis, there is not much of a difference in the results between the

simulated missions. GFO Case 3 does have a smaller error RMS for six of the eight

basins than GRACE but the differences are quite small.

Table 5.12 shows the trend, annual amplitude, and phase of the Truth, GRACE,

and GFO Case 3 mass variation time series for each basin. The error in trend and

annual amplitude are plotted in Figure 5.46. GFO Case 3 estimates do provide a

noticeable improvement in the trend estimates for some of the basins, while neither

mission consistently provides better estimates of the annual amplitude.
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Figure 5.45: South America basin mass variations time series for different mission con-
figurations: all error sources.

Basin Truth GRACE GFO Case 3
signal RMS error RMS error RMS
(cm of water) (cm of water) (cm of water)

1 6.222 1.243 1.042

2 5.459 1.617 1.628

3 6.705 2.106 1.267

4 13.609 3.177 3.589

5 9.076 2.587 1.880

6 11.844 2.438 2.310

7 3.790 2.642 1.809

8 8.907 4.546 3.577

Table 5.11: RMS of errors for South America basin mass estimates for different mission
configurations shown in Figure 5.45: all error sources.
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Basin Truth GRACE GFO Case 3
Trend Amp Phase Trend Amp Phase Trend Amp Phase
(cm) (cm/yr) (deg) (cm) (cm/yr) (deg) (cm) (cm/yr) (deg)

1 1.12 9.21 10.52 0.47 10.07 4.68 0.37 9.36 3.94

2 -0.95 7.04 27.87 -2.16 5.69 19.40 -2.12 5.02 21.65

3 1.48 8.40 219.58 3.32 5.90 228.08 1.77 7.71 229.94

4 -0.58 19.18 26.41 -1.73 15.10 22.86 -0.35 14.51 22.41

5 3.05 12.48 24.33 2.59 9.53 19.27 2.41 11.32 22.04

6 1.03 15.97 2.28 0.70 13.24 3.28 0.57 13.65 4.72

7 2.19 3.24 195.61 0.66 2.96 204.60 2.25 1.92 218.90

8 4.43 9.69 236.32 0.23 12.30 245.63 1.45 12.13 247.55

Table 5.12: Best fit trend, annual amplitude, and phase values for South America basins:
all error sources.

1 2 3 4 5 6 7 8
0

2

4

6

Basin number

T
re

nd
 e

rr
or

 (
cm

 o
f w

at
er

)

 

 

1 2 3 4 5 6 7 8
0

2

4

6

Basin number

A
m

pl
itu

de
 e

rr
or

 (
cm

 o
f w

at
er

)

GRACE

GFO Case 3

Figure 5.46: Errors in trend and amplitude estimates for each South America basin for
GRACE and GFO Case 3: all error sources.
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5.5.3.2 Greenland

Monthly error RMS values for the simulated Greenland gravity estimates for the

four missions where all error sources are included is given in Figure 5.47. The mean of the

RMS values are given in Table 5.13. As with the South America all errors simulations,

the performance of GRACE and GFO Case 1 is the same, and the performance of

GFO Case 2 and GFO Case 3 is the same. There is a noticeable difference between

the GRACE and GFO Case 3 performance which is most pronounced for the middle

months of the simulation, when the size of the Truth signal is largest. This difference

is due to the difference in the temporal aliasing errors which are discussed further in

Section 5.6.
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Figure 5.47: RMS errors of Greenland spatial maps for all mission configurations: all
error sources.

Mission RMS
Configuration (cm of water)

GRACE 6.59

GFO Case 1 6.59

GFO Case 2 5.78

GFO Case 3 5.78

Table 5.13: Mean of monthly RMS of 25 Greenland spatial plots for all errors case.
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The spectral density of the spatial plots for the Truth and the GRACE and GFO

Case 3 errors are given in Figure 5.48. This shows moderate improvements for GFO

Case 3 at the largest spatial frequencies only.
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Figure 5.48: Mean spectral density of monthly spatial maps for the Truth signal and
GRACE and GFO Case 3 error over Greenland: all error sources.

The time series of mass variations for the Greenland basins and Greenland total

are plotted in Figures 5.49 and 5.50 respectively. The error RMS values for each basin

and all of Greenland are given in Table 5.14. The GRACE mass variations are noticeably

more noisy than the GFO Case 3 solutions, especially for the inland basins (7-12).

The larger errors in the GRACE mass estimates is due to the combined effect of the

accelerometer errors, and the larger aliasing errors which are present for the higher

altitude orbit case.

The estimated values for the trend, annual amplitude, and phase for GRACE and

GFO Case 3 are given in Table 5.15 and the errors in the trend and annual amplitude

are plotted in Figure 5.51. Even though there are improvements for GFO Case 3 in

terms of the error RMS values for the mass variations, it does not result in improved

estimates of the trend and amplitude values.
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Figure 5.49: Greenland basin mass variations time series for different mission configu-
rations: all error sources.
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Figure 5.50: Total Greenland variation time series for different mission configurations:
all error sources.

Basin Truth GRACE GFO Case 3
signal RMS error RMS error RMS
(cm of water) (cm of water) (cm of water)

1 16.513 3.734 2.707

2 16.306 4.010 2.309

3 20.708 5.464 5.462

4 24.937 7.196 7.814

5 17.647 4.447 3.269

6 20.325 6.663 7.192

7 5.145 3.547 2.619

8 3.628 4.125 3.391

9 7.241 2.979 1.958

10 14.295 5.688 5.062

11 4.258 6.969 6.042

12 4.496 3.865 2.837

Total 11.959 2.183 2.081

Table 5.14: RMS of errors for Greenland basin mass estimates for different mission
configurations shown in Figure 5.49: all error sources.
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Basin Truth GRACE GFO Case 3
Trend Amp Phase Trend Amp Phase Trend Amp Phase
(cm) (cm/yr) (deg) (cm) (cm/yr) (deg) (cm) (cm/yr) (deg)

1 0.13 23.88 -0.00 0.06 24.61 4.42 -0.18 22.38 1.19

2 -0.39 23.41 -0.00 -0.52 24.60 4.70 -0.56 22.34 1.25

3 -18.07 20.44 -0.00 -10.50 22.45 3.20 -9.47 20.08 0.15

4 -27.89 19.35 -0.00 -16.99 19.39 -1.59 -15.79 18.64 -2.72

5 -4.96 23.61 -0.00 -8.51 23.76 5.30 -6.94 22.34 1.06

6 -14.70 22.24 -0.00 -5.04 22.50 4.94 -4.35 20.76 1.06

7 0.04 7.44 -0.00 -1.99 6.49 -15.48 -2.76 6.14 -11.20

8 0.97 5.48 -0.00 -3.10 4.72 -23.32 -3.80 4.41 -17.66

9 -7.16 6.47 -0.00 -7.84 6.11 -10.95 -7.57 5.76 -12.04

10 -19.58 7.12 -0.00 -13.06 6.43 -16.14 -12.46 6.54 -13.98

11 -0.36 6.03 -0.00 -10.51 5.24 -16.44 -9.95 5.35 -15.61

12 -2.48 5.40 -0.00 -5.82 4.68 -16.86 -5.91 4.47 -16.31

Table 5.15: Best fit trend, annual amplitude, and phase values for Greenland basins:
all error sources.
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Figure 5.51: Errors in trend and amplitude estimates for each Greenland basin for
GRACE and GFO Case 3: all error sources.
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5.6 Effects of Temporal Aliasing

This section explores the effect that temporal aliasing has on the errors of the

simulations. As the results in this section show, temporal aliasing is the dominant error

source on the simulated gravity estimates, and the reason that there are not dramatic

differences for the results of the different mission configurations presented in Section

5.5.

5.6.1 Satellite Altitude Sensitivity to Aliasing

The results presented here, show the effect that the satellite altitude has on the

temporal aliasing errors for regional mascon estimates. For these simulations, the Truth

signal is defined by the ECMWF/OMCT AOD signal and the FES2004 tidal signal, and

the Nominal signal is defined by the NCEP/MOG2D AOD signal and the GOT00 tidal

signal. The estimated signal is thus the approximate effect that these errors have on

the solutions previously presented. The simulations are performed for the two different

orbits considered in this study, where one has an altitude of ∼ 480 km and the other

has an altitude of ∼ 250 km.

The recovered temporal aliasing error over South America for the two orbits are

shown in Figures 5.52 and 5.53. The aliasing errors are clearly larger for the 480 km

orbit than for the 250 km orbit. This difference in aliasing errors is caused by the

difference in the satellite altitude and the difference in the spatial sampling of the two

orbits as shown in Figure 3.9.

The corresponding time series of mass variations due to the temporal aliasing

error for the two orbits is shown in Figure 5.54. The Truth signal is included on the

plots as a point of comparison. Table 5.16 gives the RMS values of the errors showing

145



that the higher altitude orbit consistently has higher aliasing errors, though significant

differences are only observed for basins 7 and 8.
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Figure 5.52: South America temporal aliasing error for the 480 km orbit.
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Figure 5.53: South America temporal aliasing error for the 250 km orbit.
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Figure 5.54: Mass variations for South America basins from temporal aliasing.

Basin 480 km altitude 250 km altitude
signal RMS signal RMS
(cm of water) (cm of water)

1 0.853 0.816

2 0.892 0.923

3 1.278 0.847

4 1.214 0.890

5 0.910 1.040

6 1.233 0.939

7 1.823 0.894

8 2.956 1.391

Table 5.16: RMS of temporal aliasing signal over South America.
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The spatial maps of the temporal aliasing error over Greenland for the two dif-

ferent orbits are shown in Figures 5.55 and 5.56. Once again, the aliasing errors are

noticeably larger for the higher altitude orbit and is caused by the difference in altitude

and the way the groundtracks sample the time-variable signal.

The mass variations for the Greenland basins due to aliasing are plotted in Figure

5.57 and Table 5.17 gives the RMS of the error for the two orbits. The difference in the

errors between the two orbit scenarios is much larger for the Greenland aliasing error

than for South America. GFO Case 3 has lower errors for all twelve Greenland basins.
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Figure 5.55: Greenland temporal aliasing error for the 480 km orbit.
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Figure 5.56: Greenland temporal aliasing error for the 250 km orbit.
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Figure 5.57: Mass variations for Greenland basins from temporal aliasing.
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Basin 480 km altitude 250 km altitude
signal RMS signal RMS
(cm of water) (cm of water)

1 4.730 2.360

2 4.756 1.987

3 3.023 1.607

4 2.986 2.191

5 4.172 2.808

6 3.777 2.547

7 3.112 2.098

8 3.172 2.133

9 2.854 1.971

10 3.433 2.343

11 3.318 2.323

12 3.128 2.150

Table 5.17: RMS of temporal aliasing signal over Greenland.

5.6.2 Separation of AOD and Tidal Aliasing Effects

This results presented here reveal the relative contributions to the total aliasing

error caused by imperfections in the models by separately simulating the effects of

the AOD errors and the tidal errors. To simulate the AOD errors only, the Truth

signal consists of the ECMWF/OMCT AOD signal, and the Nominal signal consists of

the NCEP/MOG2D signal. To simulate the tidal errors only, the Truth signal is the

FES2004 tide model, and the Nominal signal is the GOT00 tide model.

The plots showing the monthly error RMS values of the different components for

South America and Greenland are shown in Figures 5.58 and 5.59 respectively. The

results show that in general the AOD errors tend to dominate, but that the tidal errors

are also significant. Both the AOD and tidal errors are largest for the Greenland 480

km altitude simulations.
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Figure 5.58: Separation of aliasing components for simulations over South America.
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Figure 5.59: Separation of aliasing components for simulations over Greenland.
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5.6.3 Measuring the Effect of Hydrological Aliasing

In addition to the temporal aliasing errors introduced by the imperfections in

the AOD and tidal models, aliasing errors are also present due to the high temporal

frequency in the hydrological signal. The effect of the hydrological aliasing on both

orbits is determined by simulating cases where the only signal is the GLDAS hydrological

signal, where no instrument noise has been added to the simulations.

The plotted data in Figure 5.60 shows the monthly spatial error RMS values for

the hydrological aliasing, along with plots for the total error, the total effect of the

aliasing error, and the AOD and tidal aliasing. The solid black line in the two plots in

Figure 5.60 is the total error for the GRACE and GFO Case 3 missions respectively.

The red marks show the errors for the case where no instrument noise is included in the

simulations, and only the aliasing errors are present. This shows that for GFO Case 3,

the aliasing errors only case, nearly exactly matches the case where all error sources are

included in the simulation, showing that the mission errors are entirely determined by

the aliasing error. Even for GRACE, the level of accuracy for the aliasing errors only

case is very close to the case where all errors are included, proving that the aliasing

errors dominate. The results also show that for South America, where the AOD errors

are relatively low, that the aliasing caused by the hydrological signal is dominant over

the AOD and tidal aliasing errors. Also, the level of hydrological errors is similar for the

two orbits, as opposed to the AOD and tidal aliasing where a noticeable improvement

is seen for the lower altitude orbit.
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Figure 5.60: Total errors and aliasing error components for South America simulations.
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5.7 Mass Variation Estimates From Mascons and Averaging Ker-

nels

The results presented in this section explore the difference in basin mass variations

as determined with the mascon approach and the application of averaging kernels to

monthly sets of spherical harmonics. The spherical harmonic solutions are formed using

the same set of partial derivatives which are used to form the mascon solutions. The

averaging kernel technique discussed in Section 2.5 is then applied to the resulting

monthly sets of spherical harmonics and plotted as a time series of mass variations for

each basin. The parameters which define the averaging kernel for each basin are varied

such that the error RMS is minimized. A scale factor is calculated for each considered

averaging kernel. The GRACE mission is the simulated case considered in this section.

Figure 5.61 shows the mass variation time series for the South America basins

as determined with mascons and the averaging kernel method. The error RMS values

for the two techniques for all basins are given in Table 5.18. The results show that

the averaging kernel method performs as well or better than the mascon estimation

method for the largest basins (1-3). As the size of the basins decreases the mascon

method performs significantly better than the averaging kernels. This improvement is

due to the spatial constraints which are applied with the mascon approach. The noisy

estimates which result from the averaging kernel are due to leakage of the signal from

outside the basin. The leakage error also causes the calculated scale factor to be large

resulting in an estimated signal that is too large.

The mass variation time series for the Greenland basins and the total Greenland

signal are shown in Figures 5.62 and 5.63 respectively. There is very little difference

in performance between the two techniques at estimating the mass changes over all of
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Greenland, with the averaging kernel method yielding a more accurate result. There

are significant differences, however, between the two methods for the basin mass vari-

ation estimates. The averaging kernel estimates are similar in accuracy to the mascon

estimates for the coastal basins, where the Truth signal is largest. The mass estimates

for the inland basins using the averaging kernel are very noisy as compared to the mas-

con estimates. Again, this discrepancy between the techniques is due to the fact that

the mascon setup allows for the application of spatial constraints which results in a

smoothed estimate. The large annual amplitudes of the inland basin estimates show

that the large signal from the coastal basins leaks into the inland basins.

The improvement in the mascon estimates observed in this section is due to the

additional information introduced into the estimation process by the spatial constraints,

as they prevent the estimates at smaller spatial scales from becoming too noisy. If a

similar constraining procedure were to be applied to spherical harmonics, it is expected

that the results would be similar in accuracy to those obtained by estimating constrained

mascons. The results in this section simply show that the standard averaging kernel

technique should not be applied to smaller basins because the leakage errors are large.
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Figure 5.61: South America basin mass variations for averaging kernel and mascon
estimation methods.

Basin Truth Averaging Mascons
signal RMS kernel error RMS
(cm of water) error RMS (cm of water)

(cm of water)

1 6.222 0.829 1.243

2 5.459 1.151 1.617

3 6.705 2.110 2.106

4 13.609 7.215 3.177

5 9.076 8.787 2.587

6 11.844 7.760 2.438

7 3.790 8.993 2.642

8 8.907 13.422 4.546

Table 5.18: RMS of errors for South America basin mass estimates for averaging kernel
and mascons: GRACE mission with all errors included.
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Figure 5.62: Greenland basin mass variations for averaging kernel and mascon estima-
tion methods.
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Figure 5.63: Total Greenland mass variations for averaging kernel and mascon estima-
tion methods.

Basin Truth Averaging Mascons
signal RMS kernel error RMS
(cm of water) error RMS (cm of water)

(cm of water)

1 16.513 3.389 3.734

2 16.306 3.930 4.010

3 20.708 5.716 5.464

4 24.937 5.406 7.196

5 17.647 9.497 4.447

6 20.325 5.443 6.663

7 5.145 14.850 3.547

8 3.628 15.647 4.125

9 7.241 15.583 2.979

10 14.295 13.150 5.688

11 4.258 22.239 6.969

12 4.496 12.246 3.865

Total 11.959 1.210 2.183

Table 5.19: RMS of errors for Greenland basin mass estimates for averaging kernel and
mascons: GRACE mission with all errors included.
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Chapter 6

Conclusions

This chapter summarizes the results presented in the previous chapter and makes

recommendations for future gravity satellite missions and further research which would

benefit the design of such a mission.

6.1 Summary and Conclusions

The first set of mascon results presented in the previous chapter explored a few

different constraint scenarios. The results showed that the setup of the constraints

can have a large effect on the accuracy of the estimates. The least accurate simulated

estimates were for the scenario where only the mascons within the defined basins were

constrained to each other. The most accurate estimates were achieved when the setup of

the constraints best accounted for the characteristics of the geophysical signals estimated

by the simulations. For the South America simulations, the best results were obtained

by separately constraining the land and ocean mascons, since the geophysical signals

over neighboring land and ocean mascons are unrelated. The ideal Greenland estimates

were formed by introducing an additional constraint matrix which took into account

the fact that the signal annual amplitude is dependent on the mascon elevation. These

simulations showed that prior knowledge of the geophysical signals should be used in
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constructing mascon constraints to optimally estimate time-variable gravity.

The simulated gravity estimates reveal that the dominant error source for all

mission configurations is temporal aliasing. The effect that temporal aliasing has on

the regional mascon estimates is determined by the magnitude of the high-frequency

variations in the signal, the satellite altitude, and the spatial and temporal sampling of

the signal due to the satellite groundtrack. Due to the spatial variability of the errors in

the AOD and tidal models, and the variations of the hydrological signal, the accuracy

of regional gravity estimates can vary significantly based on location. For example, the

results showed that temporal aliasing of the hydrological signal is the dominant error

source for gravity estimation over South America, while the aliasing errors from AOD

and tidal model errors are dominant over Greenland. Aliasing errors caused by AOD

errors were consistently larger than those from tidal error, but the tidal errors were still

significant.

Inclusion of the laser interferometer on a GRACE follow-on mission only improves

the accuracy of the gravity estimates for cases where high-frequency variations in the

signal do not exit. This was shown in the results by the fact that there was no observable

difference between GRACE and GFO Case 1 performance, and between GFO Case 2

and GFO Case 3 performance, for South America hydrology estimates, or Greenland

estimates where AOD and tidal errors are included.

The spatial resolution study examined the ability for each mission configuration

to recover a static mass signal within a small block of 1◦ × 1◦. This study showed that

even without the presence of temporal aliasing there was still no improvement in the

gravity estimate for GFO Case 1 as compared to GRACE. This means that in order to

take advantage of the improved range-rate accuracy provided by the laser, the errors

associated with the on-board accelerometers need to be reduced. In the case where the
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drag-free system is implemented (GFO Case 2 and GFO Case 3), the accuracy of the

results are significantly affected by the level of noise in the range-rate measurements,

with the laser allowing for a much more spatially focused estimate.

A final interesting result of this work, shows that the mascon estimation method

provides large improvements for estimating mass changes within smaller basins, as com-

pared to estimates formed by applying an unconstrained averaging kernel to monthly

sets of spherical harmonics. For large basins, the accuracy of the mass change estimates

are similar. The improved estimates of the mascon approach is due to the spatial con-

straints which are applied to the mascons, and the increase in leakage error that exists

for smaller averaging kernels. It is expected that a similar constraining procedure could

be applied to spherical harmonic estimates to achieve similar results.

6.2 Recommendations

In regards to a GRACE Follow-On mission, the most important priority should

be a continuation of the time series of data. As discussed in Chapter 1, the data

provided by the GRACE mission has made a great deal of unique contributions to

a number of important areas of scientific research, so an interruption in the data is

clearly undesirable. The results presented in this work reveal that simply replacing

the K-band microwave ranging system with the laser interferometer would not provide

improvements to the gravity estimation for the current level of accelerometer error and

the current GRACE orbit. To achieve better performance with a GFO, the improved

laser ranging system should be accompanied by a reduction in the errors associated

with the accelerometer. A mission that is equipped with both a laser interferometer

and a drag-free system would be considerably more expensive, and so is unlikely to fly

in the immediate future. If only one of the new technologies investigated here were
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to be incorporated into a follow-on mission, the most benefit would be realized with a

drag-free system, and would ideally be placed in a lower altitude orbit than the current

GRACE mission.

Even if it were realistic to launch a GRACE Follow-On mission equipped with

both the laser interferometer and a drag-free system, this report shows that the improve-

ment to regional gravity estimates would still only be moderate, due to the limitations

of temporal aliasing. It is recommended here, that future research in regards to a GFO

should focus on ways in which the effects of temporal aliasing can be reduced. It is con-

ceivable that improved methods of data processing, such as a method which analyzes

the data along-track, might effectively improve the temporal resolution of the solutions,

thus reducing this error. Additionally, alternative architectures for a follow-on mission

might be investigated to determine if different mission configurations, such as some

sort of satellite constellation, would reduce the aliasing errors. Lastly, more accurate

geophysical models would also decrease the temporal aliasing errors. This reduction

in aliasing errors would result in better gravity estimates for a GFO mission, with the

updated technologies, than are observed in this simulation study.
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Appendix A

Spherical Harmonics

As shown in Chapter 2 the gravitational potential at a point outside of the Earth

is given by,

V =
µ

r

(
1 +

∞∑

n=1

n∑

m=0

(
R⊕

r

)n

Pnm(sin φ)(Cnm cos mλ + Snm sinmλ)

)
. (A.1)

The terms Cnm, and Snm are called geopotential coefficients and are defined by,

Cn =
1

M

∫∫∫

earth

(
r′

R⊕

)n

Pnm(sin φ)dm for m = 0





Cnm

Snm





=
2

M
× (n − m)!

(n + m)!

∫∫∫

earth

(
r′

R⊕

)n

Pnm(sin φ)





cos mλ′

sin mλ′





dm for m 6= 0

(A.2)

where Pnm(sin φ) are the associated Legendre functions. The associated Legendre func-

tions are given by,

Pnm(x) = (1 − x2)
m

2

dm

dxm
Pn(x) (A.3)

where,

Pn(x) =
1

2nn!

dn

dxn
[(x2 − 1)n]. (A.4)

As explained in Section 2.3 the fully normalized associated Legendre functions

are used. For the fully normalized definition of the associated Legendre functions the
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following relation is satisfied,

1

4π

∫∫

σ


P̃nm





cos mλ

sin mλ








2

dσ = 1 (A.5)

where σ is the unit sphere. The fully normalized associate Legendre functions are then

given by,

P̃nm(sin φ) =

[
k(2n + 1)(n − m)!

(n + m)!

]1/2

Pnm(sin φ). (A.6)

with k = 1 for m = 0, and k = 2 for m 6= 0.

It is useful to describe spherical harmonics in terms of their nodal lines. In the

direction of longitude the number of nodal lines is the number of zeros from λ = 0 to

λ = 2π and for latitude it is the number of zeros from φ = −π
2 to φ = π

2 . Figure A.1

shows examples of the three types of spherical harmonics.

Figure A.1: Examples of harmonic types: (i)Zonal (ii)Sectorial (iii)Tesseral.

The harmonic types have the following properties:

(i) Zonal harmonics occur when m = 0. For this case there are no nodal lines of longitude

and there are n nodal lines of latitude.

(ii) Sectorial harmonics occur when n = m. There are no nodal lines of latitude and

there are 2n nodal lines of longitude.

(iii) Tesseral harmonics occur when n 6= m. In this case there are 2m nodal lines of

longitude and there are n − m nodal lines of latitude.
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The equations required for orbit propagation and parameter estimation with re-

gards to the spherical harmonic parameters are now presented. This material is de-

veloped in [Vallado, 2001]. As described by Eq. (3.3), the acceleration due to the

non-sphericity of the Earth is equal to the gradient of the potential U , which is the

non-spherical component of Eq. (A.1) and was previously defined in Eq. (3.4). It is

convenient to differentiate the Legendre functions in spherical coordinates (r,φ,λ) and to

determine the acceleration in Cartesian coordinates, so the chain rule is applied. Matrix

differentiation is done in the body-fixed frame and numerical integration is performed

in an inertial frame. The position vector is then defined as r = xî + yĵ + zk̂ in the

body-fixed frame. The acceleration is:

r̈ =
∂U

∂r
=

∂U

∂r

∂r

∂r
+

∂U

∂φ

∂φ

∂r
+

∂U

∂λ

∂λ

∂r
(A.7)

Evaluating the partial derivatives in Eq. (A.7) gives:

∂U

∂r
= − µ

r2

∞∑

n=2

n∑

m=0

(
R⊕

r

)n

(n + 1)Pn,m(sin φ)(Cnm cos mλ + Snm sin mλ)

∂U

∂φ
=

µ

r

∞∑

n=2

n∑

m=0

(
R⊕

r

)n

(Pn,m+1(sin φ) − m tan φPn,m(sin φ)) (Cnm cos mλ + Snm sin mλ)

∂U

∂λ
=

µ
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∞∑

n=2

n∑

m=0

(
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r

)n

mPn,m(sin φ)(Snm cos mλ − Cnm sin mλ) (A.8)

The partial derivatives of the spherical coordinates are:

∂r

∂r
=

rT

r
∂φ

∂r
=

1√
x2 + y2

(
−rT z

r2
+

∂z

∂r

)
(A.9)

∂λ

∂r
=

1

x2 + y2

(
x

∂y

∂r
− y

∂x

∂r

)

Combining the partial derivatives and separating them into components gives the ac-
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celerations in Cartesian coordinates:

ẍ =

{
1

r

∂U

∂r
− z

r2
√

x2 + y2

∂U

∂φ

}
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1
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x (A.10)

z̈ =
1

r

∂U

∂r
z +

√
x2 + y2

r2

∂U

∂φ

Eq. (A.10) describes the term fNS as given in Eq. (3.3) and is used for satellite

orbit propagation in the presence of a non-spherical gravitational potential described

by spherical harmonics.

The partial derivatives of the acceleration vector with respect to the position

vector are contained in the A matrix of Eq. (3.17) and are given here:
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∂r2
(A.11)
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The components of Eq. (A.11) are computed:
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The second derivatives of the spherical coordinates are:
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(A.13)

where I is the identity matrix in the body-fixed frame.

Gravity field solutions are often described in terms of their spatial resolution.

In degrees the spatial resolution is defined by 180◦/Nmax where Nmax is the spherical
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harmonic degree at which the expansion is truncated. The spatial resolution given in

kilometers is defined by,

spatial resolution =
40, 000 km

2Nmax
. (A.14)

It is common to describe a spherical harmonic representation of the gravity field as

having a certain level of accuracy (in terms of geoid height or equivalent water height)

to some spatial resolution.
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Appendix B

Fourier Transforms

Definitions are given here for various Fourier transforms. The discrete inverse

Fourier transform was used for generating a time series of range-rate errors from the

spectral density of errors as discussed in Section 4.2.2. The work in this section is

presented in greater detail in [Briggs, 1995; Gray and Goodman, 1995; Walker , 1991].

The continuous Fourier transform X(f) of a function of time x(t) is defined as,

X(f) =

∫
∞

−∞

x(t)e−i2πftdt (B.1)

where t is time and f is frequency. The unit of time is seconds and the unit of frequency

is Hz. The inverse Fourier transform is then given by,

x(t) =

∫
∞

−∞

X(f)ei2πftdf. (B.2)

For this study a discrete function of time, x[n], is required. The discrete Fourier

transform X[l] is given by,

X[l] =

N−1∑

n=0

x[n]e−i2πln/N l = 0, 1, 2, ...,N − 1 (B.3)

and its inverse is,

x[n] =
1

N

N−1∑

l=0

X[l]ei2πln/N n = 0, 1, 2, ...,N − 1 (B.4)
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where N is the number of discrete data points in the time series.

The number of data points in the time series is defined by the time period, T ,

and the sampling rate in the time domain, ∆t,

N =
T

∆t
. (B.5)

The time series signal is defined at the discrete points,

tn = n∆t, n = 0, 1, 2, ...,N − 1. (B.6)

The frequency sampling rate is defined by,

∆f =
1

N∆t
, (B.7)

and the frequency spectrum is defined by,

fl =
l

N∆t
, l = −N

2
, ...,

N

2
(B.8)

The inverse discrete Fourier transform was performed using the MATLAB soft-

ware package which uses the IFFT (inverse fast Fourier transform) algorithm. For the

IFFT algorithm the summation takes place over l = 0, ...,N −1 as in Equation B.4. For

this reason the frequency spectrum given in Equation B.8 is rearranged as follows:

fl =

{
0,

1

N∆t
, ...,

N/2 − 1

N∆t
,

1

2∆t
,−N/2 − 1

N∆t
, ...,− 1

N∆t

}
. (B.9)

In order to introduce random phases into the spectral density prior to taking the

inverse discrete Fourier transform, the positive frequency points were multiplied by eiφ

and the negative frequency points were multiplied by e−iφ where φ is a random phase

from 0 to 2π. This procedure is used in [Ebisuzaki , 1997].

In this study the numerical simulations are performed with a sampling rate of 5

seconds. The simulated noise must be generated for at least one month. The computa-

tional time for the IFFT algorithm is minimized when the number of samples is a power
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of 2 so N is selected to be the smallest power of two such that the time series is at least

one month long.

The two dimensional discrete Fourier transform is defined as

X[l1, l2] =

N2−1∑

n2=0

N1−1∑

n1=0

x[n1, n2]e
−i2π(l1n1/N1+l2n2/N2) (B.10)

where l1 = 0, 1, 2, ...,N1 − 1; l2 = 0, 1, 2, ...,N2 − 1.

The above equation is utilized in Section 2.6 for analyzing the spatial frequencies of

regional gravity plots. The result of Eq. (B.10) is used in Eq. (C.3) to determine the

two dimensional power spectral density.
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Appendix C

Spectral Density

The total power of a continuous time series x(t) is defined by:

P =

∫
∞

−∞

|X(f)|2 df. (C.1)

where X(f) is the Fourier transform of x(t) and is given by Eq. (B.1). The power spec-

tral density (PSD) is a representation of the power of a signal over a certain frequency

bandwidth and is labeled unit2/Hz. The PSD for each discrete frequency value f can

be written:

PSD(f) = |X(f)|2 + |X(−f)|2, f ≥ 0. (C.2)

If the time series x(t) is real Eq. (C.2) simplifies to:

PSD(f) = 2|X(f)|2, f ≥ 0. (C.3)

The plots describing the satellite-to-satellite measurement errors presented in Section

4.2 are given in terms of the amplitude spectral density (ASD) which is the square-root

of the PSD having the label unit/
√

Hz.
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Appendix D

Satellite-to-Satellite Range and Range-rate Equations

D.1 Tracking Observables

The primary observable of the GRACE mission is the satellite-to-satellite range

and range-rate measurements made by the K-band microwave ranging system. Simula-

tions show that the best results are obtained when using the range-rate measurements

[Kim, 2000] and that is the convention in current GRACE data processing. Both range

and range-rate equations are developed in this section.

The satellite-to-satellite range is defined by

ρ =
√

(r1 − r2)T (r1 − r2) (D.1)

where r1 and r2 are the inertial position vectors of satellite 1 and satellite 2 respectively.

The vector r12 defines the difference between the two satellite position vectors:

r12 = r1 − r2, (D.2)

and the line-of-sight unit vector ê12 is defined by

ê12 =
r12

ρ
. (D.3)

Differentiating the range observable gives the range-rate

ρ̇ = ṙ12 · ê12. (D.4)
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The range-rate observable is a projection of the velocity difference along the line-of-sight

unit vector and differs in magnitude from the velocity difference vector.

D.2 Measurement Partial Derivatives

The partial derivatives of the range and range-rate observables with respect to

the satellite position and velocity vectors are given here. These partials are contained

in the H matrix of Eq. (3.17).

The partial derivatives of the range observable are

∂ρ

∂r1
=

(
r1 − r2

ρ

)T ∂ρ

∂r2
= − ∂ρ

∂r1
(D.5)

∂ρ

∂v1
= 0

∂ρ

∂v2
= 0 (D.6)

The partial derivatives of the range-rate observable are

∂ρ̇

∂r1
=

1

ρ

(
ṙ12 −

r12

ρ
ρ̇

)T ∂ρ̇

∂r2
= − ∂ρ̇

∂r1
(D.7)

∂ρ̇

∂v1
=

(
r12

ρ

)T ∂ρ̇

∂v2
= − ∂ρ̇

∂v1
(D.8)

D.3 Perturbed Motion Equations

This section develops a simplified range-rate perturbation equation due to per-

turbed satellite motion. The resulting equation is applied using Hill’s equations in

Appendix E. The purpose of this method is to include the accelerometer errors into

the satellite-to-satellite range-rate observations. This procedure is developed by [Kim,

2000].

The nominal satellite-to-satellite range ρ0 is defined by

ρ0 = (r10 − r20) · ê0 (D.9)
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where r10 and r20 are the nominal position vectors of satellites 1 and 2 respectively and

ê0 is the nominal line-of-sight unit vector. The perturbed range ρ is then defined by

ρ = (r1 − r2) · ê (D.10)

where

r1 = r10 + δr1

r2 = r20 + δr2 (D.11)

ê = ê0 + δê

and δr1, δr2, and ê0 are the perturbed position and line-of-sight vectors. Combining

Eq. (D.11) and Eq. (D.10) and considering the definition of Eq. (D.9), and assuming

δê is close to zero, the perturbed range equation is

δρ = (δr1 − δr2) · ê0. (D.12)

This is the projection of the relative position vector variation onto the line-of-sight unit

vector. Similarly, the perturbed range-rate equation is

δρ̇ = (δṙ1 − δṙ2) · ê0

+
1

ρ0
(ṙ10 − ṙ20) · f̂0(δr10 − δr20) · f̂0 (D.13)

+
1

ρ0
(ṙ10 − ṙ20) · ĝ0(δr10 − δr20) · ĝ0

where ê0, f̂0, and ĝ0 are orthonormal and f̂0 is in the cross-track direction. By assuming

that the satellites are in a circular tandem orbit the second term becomes zero, and

since the value of ρ0 is relatively large the third term can be neglected. The simplified

expression for the range-rate perturbation caused by a perturbed satellite motion is then

δρ̇ = (δṙ1 − δṙ2) · ê0 (D.14)
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The range and range-rate perturbed motion equations are now developed in

the satellite radial, transverse, and normal local coordinate frame as shown in Figure

D.1. For the local coordinates ĥij , the subscript i describes the directional component

(u,v,w), and j is the satellite number.

The range equation can described by

δρ =


 ∑

i=u,v,w

(δxi)1ĥi1 −
∑

i=u,v,w

(δxi)1ĥi2


 · ê0 (D.15)

Again, assuming circular tandem satellite orbits, Eq. (D.15) is simplified to

δρ = (u1 + u2) sin
θ

2
+ (v1 − v2) cos

θ

2
(D.16)

where θ is the angle of separation between the two satellites and ui and vi are the

perturbed positions from the nominal circular orbit. The normal terms are zero since a

circular orbit is assumed. Similarly, the range-rate perturbed motion equation is

δρ̇ = (u̇1 + u̇2) sin
θ

2
+ (v̇1 − v̇2) cos

θ

2
(D.17)

where u̇i and v̇i are the perturbed velocities from the nominal circular orbit. Eq. (D.17)

is applied to Hill’s equations in the next section to provide a means of converting

accelerometer errors into range-rate observation errors.
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Figure D.1: Local coordinates.
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Appendix E

Application of Hill’s Equations

This section summarizes the use of Hill’s equations to determine a transfer func-

tion between a perturbation on the satellite motion and the perturbation in the range-

rate. This procedure allows the power spectral density which describes the accelerometer

errors to be mapped into a power spectral density of the associated range-rate pertur-

bation. The procedure outlined here is developed by [Kim, 2000].

The Hill’s equations [Hill , 1878] describe relative satellite motion in the local

radial, transverse, and normal coordinate system. The solution for a near-circular orbit

is given by

fu = ü − 2nv̇ − 3n2u

fv = v̈ + 2nu̇ (E.1)

fw = ẅ + n2w

where n =
√

µ/r3
0 is the mean motion of the satellite, and u,w, and v are the per-

turbed positions and fu, fv, and fw are the disturbing forces in the radial, normal, and

transverse directions.

Considering Eq.(D.17) and Eq. (E.1) the relationship between the perturbed
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satellite state and the perturbed range-rate can be described in state-space form:

ẋ = Ax + Bf (E.2)

y = Dx (E.3)

where

x = [u1 v1 u̇1 v̇1 u2 v2 u̇2 v̇2 ]T

f = [fu1
fv1

fu2
fv2

]T

y = [δρ̇u1
δρ̇v1

δρ̇u2
δρ̇v2

]T

and x is the perturbed satellite state vector which describes both satellites, f is the

perturbing force vector acting on each satellite, and f is the range-rate perturbation

vector. The normal components are not included due to the fact that there are no

normal terms in Eq. (D.17).

Expanding Eq. (E.2) gives




u̇1

v̇1

ü1

v̈1

u̇2

v̇2

ü2

v̈2




=




0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

3n2 0 0 2n 0 0 0 0

0 0 −2n 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 3n2 0 0 2n

0 0 0 0 0 0 −2n 0




�




u1

v1

u̇1

v̇1

u2

v2

u̇2

v̇2




+




0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1




�




fu1

fv1

fu2

fv2




(E.4)
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Expanding Eq. (E.3) gives




δρ̇u1

δρ̇v1

δρ̇u2

δρ̇v2




=




0 0 k1 0 0 0 0 0

0 0 0 k2 0 0 0 0

0 0 0 0 0 0 k1 0

0 0 0 0 0 0 0 −k2




�




u1

v1

u̇1

v̇1

u2

v2

u̇2

v̇2




(E.5)

where

k1 = sin
θ

2

k2 = cos
θ

2

A transfer function with zero initial conditions is given by

G(s) = D(sI − A)−1B (E.6)

The amplitude spectral density for the accelerometer measurement errors given

in Table 4.1. The resulting range-rate perturbation amplitude spectral density is the

sum of the radial and transverse perturbations and is shown in Figure (4.3). The

IFFT is taken of this amplitude spectral density to produce a time-series of range-rate

observation errors which are then included in the simulation to account for errors in the

accelerometer. The IFFT procedure is summarized in Appendix B.
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