DECIGOパスファインダー (DPF)

— ミッション提案書 —

DECIGO パスファインダー検討グループ

2006年11月

DECIGO パスファインダー検討グループ
 連絡先: 安東 正樹,
 〒 113-0033 東京都 文京区 本郷 7-3-1
 東京大学 理学系研究科 物理学教室,
 E-mail: ando@granite.phys.s.u-tokyo.ac.jp,
 Tel: 03-5841-4142,
 Fax: 03-5841-4149

更新履歴 2006年11月17日初版 2006年12月4日メンバー氏名を更新

表紙絵:

DECIGO パスファインダー (DPF)の概念図.DPF は,試験質量の役割をする2つの鏡で構成されたファ ブリーペロー干渉計と,安定化レーザー光源を搭載した100kg級の小型衛星である.外乱の影響を抑えるため に,鏡の位置を基準に衛星の位置・姿勢を制御するドラッグフリー制御を行う.軌道は,高度750kmの太陽指 向の極軌道を想定している.干渉計の光軸が地表に対して水平方向,太陽電池パネルが太陽方向を向く姿勢を 維持する.(CG 製作:麻生洋一) DECIGO パスファインダー検討グループ (順不同,敬称略)

東京大学 理学系研究科 安東 正樹, 坪野 公夫, 石徹白 晃治, 高橋 走, 小野里 光司, 沼田 健司 , 穀山 涉, 樽家 篤史, 姫本 宣朗 国立天文台 重力波プロジェクト推進室 川村 静児, 新井 宏二, 佐藤 修一, 森本 睦子, 苔山 圭以子 , 高橋 龍一 , 森岡 友子, 固武 慶, 山崎 利孝 宇宙航空研究開発機構 宇宙科学研究本部 高橋 忠幸, 高島 健, 坂井 真一郎, 船木 一幸, 西山 和孝, 國中 均 大阪市立大学 理学研究科 神田 展行, 石原 秀行, 中尾 憲一 , 徳田 充 電気通信大学 レーザー新世代研究センター 武者 満, 植田 憲一 東京大学 新領域創成科学研究科 森脇 成典,川浪 徹 カリフォルニア大学 瀬戸 直樹 新潟大学 自然科学系 佐藤 孝 京都大学 生存圈研究所 山川 宏 東海大学 工学部 堀澤 秀行 東京大学 工学系研究科 小泉 宏之 コロンビア大学

麻生 洋一

東京大学 総合文化研究科 柴田 大 マックスプランク重力物理研究所 (アルバートアインシュタイン研究所) 高橋 弘毅 ,宗宮 健太郎 産業技術総合研究所 計測標準研究部門 大苗 敦 , 池上 健 大阪大学 理学研究科 田越 秀行 弘前大学 理工学部 浅田 秀樹 東京大学 宇宙線研究所 三代木 伸二 , 徳成 正雄 , 阿久津 朋美 テキサス大学 重力波天文学センター 端山 和大 , 中野 寛之 情報通信研究機構 新世代ネットワーク研究センター 細川 瑞彦 , 長野 重夫 京都大学 理学研究科 中村 卓史, 田中 貴浩, 井岡 邦仁 東京大学 ビッグバン宇宙国際研究センター 横山 順一 京都大学 大学院 人間・環境学研究科 阪上 雅昭

日本国内で提案されている宇宙重力波望遠鏡 DECIGO¹では,0.1 Hz 付近の周波数帯を観 測することによって,宇宙の起源や構成に対する知見,ブラックホールや中性子星の合体や ガンマ線バーストなどの激しい天体現象に対する知見といった,宇宙に対する新しい知見を 得る事が期待できる.これは,これまで主に行われてきた電磁波による天文学とは相補的な 情報であり,また,計画中の他の重力波望遠鏡では手に入れることができない新しい科学的 成果になるはずである.しかし,DECIGO 実現のためには,克服しなければならない技術 目標が数多くあり,それらを段階的に達成していくことが不可欠である.

そこで,本書では,その中でも特に重要と考えられる技術に関して宇宙実証試験を行う と共に,実際の重力波観測を行うことを目指し,100kg級の小型衛星 DECIGO パスファイ ンダー(DECIGO Path Finder, DPF)の打ち上げミッションを提案する.DPF は,高度 750kmの地球周回軌道(太陽同期極軌道)に投入され,衛星内には,ドラッグフリー制御に よって非接触保持された2つの試験質量(鏡)と安定化レーザー光源を搭載する.これらの鏡 で構成された基線長10cmのファプリ・ペロー干渉計の基線長変化を,安定化倍波Nd:YAG レーザー光源を用いて測定することで,0.1-1 Hz付近での重力波観測を行う.また,その過 程で,DECIGO実現のために重要な開発項目である,(1)衛星のドラッグフリー制御,(2) レーザー光源とその安定化システム,(3)レーザー干渉計制御,(4)クランプ・リリース機構, の4つの宇宙実証試験を行う.小型観測装置であるために,DPFの感度は,これまで地上で 実現されている重力波望遠鏡や,将来の宇宙重力波検出器の感度には及ばない.しかし,こ の周波数帯では,地上検出器では観測することのできないため,これまでに実際に重力波を 観測した例は無い.その一方で,銀河中心ブラックホールの準固有振動や,中間質量ブラッ クホール合体からの重力波は,この周波数帯で放射されていることが予想されている.従っ て,DPFで得られた観測結果は,これまでにない貴重なものになると期待できる.

DPF 衛星の開発期間は5年半とし,ロケットでの打上げ後,半年間の技術試験と観測運用 を行う計画になっている.衛星開発費用は,8億円を見込んでいる.この衛星開発費用は,文 部科学省の科学研究費・特定領域研究に応募中の「宇宙空間を利用した低周波重力波天文学 の開拓」の予算枠を用いる計画になっている.衛星のロケットでの打上げと運用は,JAXA が公募している「打上げ機会の提供」を第一候補とする.開発費用を特定領域研究でまかな うため,打上げ機会は高い可能性で得られる見込みである².

本提案書では, DPF ミッションに関して,研究の背景, ミッションの目的, ミッション 機器の概念設計,衛星システムの概要,スケジュール,費用,実行体制を示す.

¹DECIGO: DECi-hertz Interferometer Gravitational Wave Observatory 「デサイゴ」と読む. 文献 [1] 内 で初めて用いられた.

²本提案書では,目的や方法・衛星の具体像などを明確にするために,これまでに行われた概念設計検討や衛 星開発の現状をもとに,衛星重量・軌道,開発スケジュールや開発の方針,費用,打ち上げ方法などを明記し, 一つの方向性を示している.ただ,これらの方針は,今後の詳細な衛星設計や基礎実験結果,衛星開発を取り 巻く状況の変化に対応して,柔軟に改善・変更していく余地がある.

目 次

1	背景	6
	1.1 重力波とそれによる天文学	6
	1.2 宇宙空間重力波望遠鏡 DECIGO の概要と期待できる成果	9
2	目的	16
	2.1 ミッションの目的	16
	2.2 ミッション成功基準	17
3	ミッション機器概念設計	18
	3.1 ファブリ・ペロー干渉計	18
	3.2 安定化レーザー光源	19
	3.3 ドラッグフリー制御	19
	3.4 重力波検出器感度と観測ターゲット	20
	3.5 外乱要因	21
4	衛星システム概要	23
	4.1 ミッション構成・軌道	23
	4.2 衛星システム構成	26
	4.3 データ処理	26
5	スケジュール・予算・人員	28
	5.1 スケジュール	28
	5.2 費用	28
	5.3 開発体制	29
6	まとめと波及効果	31
۸	外利・雑辛の目積 11	22
Π	A 1 試験質量に直接作田する外到	34
		34
	A 1 2 雷磁力	38
	A 1.3 その他の試験質量に直接作用する力	42
	A.2 衛星に作用する外乱	43
	A.3 干渉計の雑音	45
в	パラメーター覧	46
С	ミッション準備状況	46

図 1: 重力波の効果. *z* 軸方向から重力波伝播してきた時, *x-y* 平面に配置された自由質点間の距離が,一方(*x* 軸方向)に伸び,それと垂直な方向(*y* 軸方向)に縮む,といった四重極的な変化をする.

1 背景

1.1 重力波とそれによる天文学

質量を持った物体が加速度運動する際,その周囲の時空の歪みが空間を伝播していく.こ の波が重力波と呼ばれ,その存在は,一般相対性理論の一つの帰結として理論的に予言され ている [2,3].一般相対性理論によると,重力波は,光速で伝播する横波であり,その進行 方向に垂直な面内での四重極的な歪み(空間の一方向で縮み,他方で伸びる,という潮汐力 の効果)が伝播していくものである(図1).重力波は,中性子星やブラックホールなどの高 密度天体の,激しい加速度運動で生成される³.重力波は,物体との相互作用が非常に小さ く,強い透過力を持つため,このような天文現象の内部を直接観測する新しい手段となり得 る.また,重力波は,電磁波では観測する事の出来ない,ビックバンから38万年以内の初期 宇宙を直接観測する唯一の手段としても期待がもたれている.しかし,相互作用が非常に小 さいため,これまで重力波は直接には検出されていない.ただ,重力波が存在することに関 しては,確実な証拠がある[4].これは,連星中性子星(PSR1913+16)の20年以上にわたる 公転周期変化の観測値が,重力波放射による公転エネルギー損失による見積もりと0.1%の 誤差以内で一致している,という観測結果であり,重力波の存在の間接的な証拠となってい る.重力波の直接検出は,一般相対性理論に残された大きな検証課題の一つであると共に, 電磁波によるものとは質の異なった新たな天文学が拓かれる可能性が期待されている.

重力波の検出と、それによる天文学の創成を目指した研究は 1960 年代から行われている [5,6].その成果として、現在までに、世界各国 (アメリカ合衆国 [7]、イタリア・フランス [8]、ドイツ・イギリス [9]、日本 [10] など) では既に大型重力波検出器が建設され、本格的な 観測が始められている.これらの検出器 (レーザー干渉計型重力波検出器) は、マイケルソ

³荷電粒子を加速度運動させることによって電磁波を放射することができるように,質点を加速度運動することによって重力波を放射することは原理的には可能である.ただ,十分大きな振幅で重力波が放射されるためには,太陽質量スケールより大きな物体の相対論的運動が必要であり,人工的な重力波発生は現実的ではない. 従って,重力波の探査は,天体起源のものをターゲットとして行われることになる.

図 2: 重力波検出器の原理.マイケルソン干渉計を基本としており,直交する2方向の光路 長が重力波の効果で差動変動したものを,干渉光量の変化として検出する.

ン干渉計を基本としており,主に,レーザー光源,ビームスプリッター,直交する2つの方向にそれぞれ配置された鏡,光検出器で構成される(図2).レーザー光源からの光は,ビームスプリッターで直交する2つの方向に分けられ,それぞれ鏡で反射された後,ビームスプリッターで干渉し,その干渉光は光検出器で観測される.ここに重力波が到来すると,その四重極特性によって,ビームスプリッターと2つの鏡の間の光路長が差動で変化することになる.この変化は,干渉光の光量変化として現れ,その変化を光検出器で検出することで重力波を検出することができる⁴.これらの検出器では,連星中性子星の合体や超新星爆発で発生する100-1 kHz の重力波をターゲットとしており,我々の銀河系やその近傍で重力波イベントがあれば検出できるだけの感度が実現されている⁵.

ただ,そのようなイベントは極めて稀と考えられており [11]⁶,本格的な天文学を行うに は,十分な観測体制にはなっていない.本格的な天文学として成立させるためには,検出器 の感度をより向上して観測できる重力波源までの距離を広げる,もしくは,検出器で観測可 能な周波数帯を広げるなど,ターゲットとなる現象を増やすための改良が必要となる(図3). そこで,アメリカ合衆国(Advanced LIGO [12])や日本(LCGT [13])では,2012年頃の観 測開始の次期計画として,より高感度の検出器を建設する計画を進めている.重力波の振幅 は波源までの距離に反比例するため,感度が1桁上がれば,1桁遠くの重力波源まで観測す ることができ,観測できるイベント数を1000倍にすることができるのである.これらの検 出器の感度が実現されれば,年間10回程度の重力波イベントが期待できることになる.た

⁴実際の検出器では,感度を高めるために,マイケルソン干渉計の腕をファブリ・ペロー共振器にしたり,リ サイクリングと呼ばれる技術を用いることで光の量子雑音の影響を低減するなどの工夫が施されている.

⁵重力波の振幅は,無次元の歪み変動量で表される.離れた2点間の距離をL[m],その距離変動量を $\delta L[m]$ とするとき,重力波の振幅は $h = \delta L/L$ となる.重力波検出器の「感度」は,どの程度小さな振幅の重力波まで検出できるかという量に相当する.

⁶連星中性子星の合体率は,1年あたり,1つの銀河で 10^{-5} 程度,超新星爆発は, 3×10^{-2} 程度と見積もられている.

図 3: 主な重力波源と検出器感度.横軸は周波数,縦軸は,重力波の歪み振幅のスペクトル密度を表す.低周波数帯に行くほど,重力波波源のスケールは大きくなり,放射される重力波振幅も大きくなる.計画されている次世代地上検出器(Advanced LIGO, LCGT)は,100 Hz 付近に感度を持ち,連星中性子星合体や超新星爆発イベントをターゲットとしている.地上検出器では,10 Hz 以下の低周波数帯は,地球重力場変動雑音(Gravity Gradient noise)によって,感度が制限されている.欧米の宇宙重力波干渉計計画(LISA)では,1 mHz 付近に良い感度をもち,大質量ブラックホールの合体や銀河系内の定常的な連星をターゲットとしている.この周波数帯では,多数ある銀河系内連星からの重力波バックグラウンドの影響で,これ以上の感度を実現することは困難である.一方,DECIGOは,0.1 Hz 付近に感度を持ち,合体数年前の連星中性子星や中間質量ブラックホール合体,初期宇宙起源の重力波

だ,これらの検出器が十分な感度を持つのは,地面振動の影響を避けることができる 10Hz 以上の周波数帯域のみであり,連星中性子星の合体や超新星爆発などのコンパクトで激しい 天体現象が主な観測対象とされている.

一方,より低周波数帯の重力波を観測し,重力波によって多様な天文現象を観測するために⁷,宇宙空間に重力波望遠鏡を打ち上げる計画が,2020年前後を目安に進められている. 宇宙空間では,地上では低周波数で問題となる地面振動の影響が無い.また,レーザー干渉 計の基線長を長くすることで,レーザー光の干渉計内での滞在時間を長くし,低周波数の重 力波の効果(レーザー光の位相変化)を積算することができる.それによって,宇宙レーザー 干渉計では,低周波数の重力波に対する感度を高めることができる.欧米が協力して進めて いる LISA (Laser Interferometer Space Antenna)プロジェクトは,地球と同様な太陽周回 軌道に 500万km 離して配置した3台の人工飛翔体(スペースクラフト,S/C)によって長基 線長の干渉計を構成する計画である[14].重力波の検出原理は,地上検出器と同様にマイケ

⁷重力波の周波数は,大雑把には,系の変動の速度(光速のオーダー)を系のスケールで割った値となる.連 星中性子星の合体や,超新星爆発などでは,中性子星の直径10km程度のコンパクトなスケールでの現象であ り,1kHz程度の重力波が放射される.一方,超大質量ブラックホールが関係するような大きなスケールで放射 される重力波は,1µHzから1mHzといった周波数をもつことになる.

ルソン干渉計を基本としている.ただ,長基線長であるため,回折による光の損失の影響が 大きく,鏡で直接レーザー光を反射することは難しい.そこで,各S/Cに搭載したレーザー 光源を,他のS/Cからやってきたレーザー光に対して位相同期し,打ち返す方式を採用し ている.LISAは,1mHz付近に感度を持ち,大質量ブラックホールに関係した現象や,銀 河系内連星からの重力波を観測することが期待されている.

日本でも,宇宙空間重力波望遠鏡 (DECIGO) を打ち上げることを目指している [15].DE-CIGO は,0.1-1 Hz の周波数帯に感度を持ち,地上の検出器や LISA では捉えることが困難 な初期宇宙起源の重力波を観測することが期待できる.DECIGO の基本デザインも,マイ ケルソン干渉計を基本としており,正三角形状に1000 km 離れた3 台の S/C 中にそれぞれ 配置された鏡の間の基線長変動をレーザー光によって精密に観測する,というものである. LISA では,レーザー光の位相同期による増幅反射を行っているのに対して,DECIGO は, 鏡での直接反射を用いて2本のファブリペロー (FP) 共振器を構成している点で LISA とは 異なった独自の計画となっている.

LISA や DECIGO といった宇宙での本格的な重力波望遠鏡は,非常に大規模なミッション になる.そこで,それぞれ前もって試験衛星を打ち上げ,宇宙空間での実証試験や無重力下 でないとできない試験を行う計画をたてている.LISA 計画では,試験機として LPF (LISA Path Finder) と呼ばれるスペースクラフトを 2009 年頃にラグランジュ点 (L1) に打ち上げ る予定になっている.一方,DECIGO 計画では,2回の前哨機を打ち上げる計画を立ててい る.その最初のものが,本研究で開発する DPF (DECIGO Path Finder) である.1 機のス ペースクラフト内に2つの試験質量(鏡)を持ち,その間の距離をレーザー光で精密計測す る,ドラッグ・フリー制御の試験を行う,という点で LPF と DPF は共通点も多いが,DPF では,ファブリ・ペロー干渉計を用いる点,YAG レーザーの倍波を使用する点,実際の重 力波観測も行い,科学的成果も目指す点が特徴となっている(表1).

1.2 宇宙空間重力波望遠鏡 DECIGO の概要と期待できる成果

宇宙空間重力波望遠鏡 (DECIGO)は,3台のS/Cを打ち上げ,その間の距離を精密に測定することで,主に0.1-1 Hz の周波数帯の重力波を観測する装置である.この周波数帯の重力波は,地上の検出器では,地面振動や地球重力場変動雑音の影響があるため観測することができない.また,宇宙レーザー干渉計 LISA では,基線長が長く,回折の影響を受けるために実効的に利用できるレーザー光量が少なくなっている.この影響で,LISA では,0.1-1 Hz の周波数帯では,レーザー光の散射雑音によってその感度が制限されている.重力波の周波数は,発生源の運動のスケールに依存するため,地上検出器や LISA とは異なった新しい周波数帯で観測を行うことは,宇宙の多様な姿を重力波によって観測することであり,重力波による天文学を実現する上で欠かすことができない.さらに,地上検出器では地面振動,LISA では銀河系内連星によるバックグラウンド重力波といった,避けることが困難な環境雑音が知られているのに対し,DECIGO がターゲットとする0.1-1 Hz の周波数帯では,そのような雑音は無いと考えられている.従って,技術を高めることによって,地上やLISA では実現できない感度を達成し,宇宙論的な距離にある波源からの重力波や,初期宇宙起源の重力波もDECIGO の観測対象として期待することができる.

DECIGO の基本デザインを図 4 に示す。これは,正三角形状に 1000 km 離れた 3 台の S/C 内に収められた鏡 (試験質量,テストマス)によって構成された,3 対のファブリ・ペロー 表 1: 関連プロジェクト一覧.

地上干涉計型重力波椅	倹出器	
LIGO [7]	(U.S.A.)	Laser Interferometer Gravitational Wave Observatory 基線長 4 km (2 台), 2 km (1 台) 実現感度 $3 \times 10^{-23} / \sqrt{\text{Hz}}$ (周波数 100 Hz 付近)
VIRGO [8]	(ITA/FRA)	ファブリ・ベロー方式 (パワーリリイクリンク) 基線長 3 km 実現感度 5 × 10 ⁻²² / $\sqrt{\text{Hz}}$ (周波数 300 Hz 付近) ファブリ・ペロー方式 (パローリサイクリング)
GEO [9]	(GER/U.K.)	シアクリ・ベロー方式 (バラーリリイクリンク) 基線長 600 m 実現感度 $3 \times 10^{-22} / \sqrt{\text{Hz}}$ (周波数 500 Hz 付近) ディレイライン ディ (デュアルリサイクリング)
TAMA [10]	(JPN)	基線長 300 m 実現感度 $1.5 \times 10^{-21} / \sqrt{\text{Hz}}$ (周波数 900 Hz 付近) ファブリ・ペロー方式 (パワーリサイクリング)
AdLIGO* [12]	(U.S.A.)	基線長 4 km (3 台), 2012 年 稼動 目標感度 3 × 10 ⁻²⁴ / $\sqrt{\text{Hz}}$ (周波数 300 Hz 付近)
LCGT* [13]	(JPN)	狭帯域 RSE 方式, メキシガンバットレーサービーム形状 Large-scale Cryogenic Gravitational-wave Telescope 基線長 3 km, 2012 年 稼動 目標感度 $4 \times 10^{-24} / \sqrt{\text{Hz}}$ (周波数 100 Hz 付近) 広期は RSE 立式 地工社 くト 第20 任頃化
空宙工法针刑重力法	金出哭	
LISA* [14]	(ESA/NASA)	Lase Interferometer Space Antenna 基線長 5×10^9 m, 2014 年以降 打上げ 目標感度 $2 \times 10^{-20} / \sqrt{\text{Hz}} (1 \text{ mHz} 付近)$
BBO*	(NASA)	光トランスポンダ方式 Big-Bang Observer, 基線長 5×10^7 m, 2025 年頃 打上げ
DECIGO * [15]	(JPN)	たドランスホンタ方式 DECi-hertz Interferometer Gravitational Wave Observatory 基線長 5×10^6 m, 2025 年頃 打上げ 目標感度 $2 \times 10^{-22} / \sqrt{\text{Hz}} (0.1 \text{ Hz} 付近)$ ファブリ・ペロー方式
衛星ミッション		
LPF* [16]	(ESA/NASA)	LISA Pathfinder, LISA のための 技術試験衛星 重量 1,900 kg 1 機, L1 点, 2009 年 打ち上げ予定 2 つの試験質量を搭載 ドラッグフリー制御 マッハツェンダーモ洗計
DPF*	(JPN)	DECIGO Pathfinder, DECIGO のための技術試験,重力波観測 100 kg 級 1 機,高度 750 km 極軌道, 2012 年 打上げ目標 2 つの試験質量を搭載,ドラッグフリー制御,ファプリ・ペロー干渉計 目標感度 $2 \times 10^{-15} / \sqrt{\text{Hz}} (1 \text{ Hz 付近})$
GRACE [17]	(NASA/DLR)	Gravity Recovery and Climate Experiment, 地球重力場観測衛星 432 kg 2 機, 衛星間距離 220 km, 高度 500 km 極軌道, 2002 年 打上げ 衛星問題離恋動をマイクロ連 (24, 22 CHz) で測題、精度 5 mm
GOCE* [18]	(ESA)	間空間距離を動をキュアロ派 (24, 52 GH2) て別起, 相反 5 mm Global Ocean Circulation Experiment, 地球重力場観測衛星 $1,200 \text{ kg } 1$ 機, 高度 285 km 極軌道, $2007 \oplus 1 $ 上げ予定 $3 軸サーボ制御加速度計, 感度 3 \times 10^{-12} \text{ m/s}^2$
GP-B [19]	(NASA)	Gravity Probe B, 相対性理論検証衛星 3,100 kg 1 機, 高度 642 km 極軌道, 2004 年 打上げ 高精度ジャイロスコープ 4 台, ドラッグフリー制御 精度 1.4 × 10 ⁻⁷ deg/yr (プロジェクト名の*印は将来計画)

図 4: DECIGO の概念図.正三角形状に 1000 km 離れた 3 台のスペースクラフト (S/C)内 に収められた鏡によって構成された,3対のファブリ・ペロー (Fabry-Perot, FP)干渉計の 基線長変動を,レーザー光によって精密に観測する.鏡をS/C に安定に保持するために,鏡 の位置を基準に,それを取り囲むS/C 位置を制御するドラッグフリー制御が施される.3 台 のS/C には,それぞれレーザー光源が搭載されており,各S/C 内の鏡間の距離を,2 つの 方向から独立に計測するように設計されている.

(Fabry-Perot, FP) 干渉計である.この干渉計の基線長変動を,レーザー光によって精密に 観測することで,重力波を観測することができる⁸.それぞれの鏡は,S/C内に非接触保持 され,S/Cが受ける太陽輻射圧などの外乱が,光路長変動測定に対する雑音として直接現れ ることを防ぐように設計されている.その際,試験質量をS/Cに安定に保持するために,試 験質量の位置を基準にし,それを取り囲むS/C位置を制御するドラッグフリー制御が施さ れる.また,これらのS/Cは,地球重力場変動の影響を避けるために,地球から十分離れた 太陽周回軌道に配置される.鏡の直径は1m,質量は100kgであり,それらの間の距離を測 定するためのレーザー光源としては,出力10Wの倍波Nd:YAGレーザー(波長532nm)を 用いる.冗長性を考慮して,レーザー光源は各S/Cに搭載されており,各S/C内の鏡間の 距離を,2つの方向から独立に計測するよう,設計されている.上記の構成によって,実現 される感度限界は,図5のようになる.最も良い感度は, $3 \times 10^{-24}/\sqrt{\text{Hz}}$ であり,0.1-1 Hz の周波数帯で実現されている.この感度は,低周波数帯では,鏡に働く外力の影響と,レー ザー光の輻射圧による雑音で制限されている.一方,高い周波数帯では,レーザー光の散射 雑音で感度が制限されている⁹.

DECIGO で期待できる科学的成果としては,(1) 宇宙の起源や構成に対する知見(2) ブ ラックホールや中性子星の合体,ガンマ線バーストといった激しい天体現象に対する知見,

⁸この基線長は、レーザー光の回折による拡がりと、鏡の直径で決められている.重力波による空間の歪み 変動を検出するためには、基線長は長いほど高感度化が可能である.その一方で、基線長を長くすると、レー ザー光の回折損失の影響で、共振器を構成することができなくなる.1000kmという基線長は、直径1mの鏡 で共振器を実現できる上限値に近い長さになる.

⁹輻射圧雑音と散射維音は,光が光子の集まりであることに起因する,干渉計にとって原理的な雑音である. これらは不確定性関係で結ばれており,一方を改善すれば他方が悪化する,というトレードオフの関係にある.

図 5: DECIGO の感度と観測ターゲット. ほぼ宇宙全域にある中性子星や中間質量ブラック ホールの連星からの重力波,初期宇宙起源の重力波が観測対象になる.

の2つに大別することができる.

DECIGO が観測を行う周波数帯では,銀河系内連星によるバックグラウンド的な重力波 が無いため、宇宙論的な距離にある天体からの重力波や、初期宇宙起源の重力波を観測す ることができる.これらを観測することによって,宇宙の起源や構成に対する知見を得る ことが期待できる.特に,重力波の透過性はとても高いために,他の手段では観測するこ とが困難な極限状態の初期宇宙を調べることが可能となる, WMAP (Wilkinson Microwave Anistropy Probe) 衛星 [20] によって最近測定された宇宙マイクロ背景放射の非等方性をはじ めとする様々な観測事実は、宇宙初期にインフレーションと呼ばれる急速な膨張時期があっ たことを強く示唆しており、更なる観測的追究が宇宙論の長期的な目標となっている、イン フレーションに関する重要な予言の一つとして、その時期に生成された背景重力波の存在が 挙げられる.この背景重力波の検出はインフレーションの確認,そしてその基本的な特徴を 捉える上で大きな意義がある.DECIGOのデータを効果的に解析することにより,図5の 左下 (水色)の線で示された振幅を持つ微弱な背景重力波を検出することが可能となる.こ の検出限界はインフレーションに関して現在得られている観測的情報を考慮した上で、とて も興味深いレベルに設定されている.背景重力波に関してはインフレーション以外にも初期 宇宙の相転移時に生成される重力波など様々な理論モデルが提案されており、この目標感度 が達成できれば DECIGO が高エネルギー物理学に対して重要な貢献をする可能性がある.

図 5 中で NS+NS と記された (緑の) 線は,宇宙の中にある連星中性子星全体がつくる背 景重力波の振幅を推定したものである.DECIGO の性能を十分に引き出して,上述の微弱 な背景重力波の検出限界まで迫るためには,重なり合った個々の連星中性子星の重力波信号 を分解して,それらの寄与をデータから取り除く必要がある.DECIGOは,宇宙論的な距 離にある連星中性子星を高い SN 比で観測する感度を持っている.これに加えて,連星中性 子星の合体率,干渉計のデータの情報量等を評価すると,この分解の作業は現実的に実行可 能であると考えられる.このためには,一年あたり数万個にも及ぶ連星中性子星の進化を詳 細に観測することが不可欠であるが,個々の連星の重力波形は,一般相対性理論によって少 数のパラメーターを使って高い精度で記述される.したがってこれらの連星は極めて正確な 時計と見なすことができる.この膨大かつ正確な時計は,宇宙論や天文学の研究を行う上で 革新的な道具となる可能性がある¹⁰.

一方,重力波観測の天文学的側面に関しては,DECIGOは地上検出器やLISAとは異なった観測周波数を持つことから,それらと相補的な情報を得ることが期待できる.また,高い感度と観測イベントレートを持つことから,連星の合体などの激しい天体現象の統計から,銀河の形成などに対する知見を得ることも期待できる.連星中性子星の合体イベントは,地上検出器の主な観測対象となっている.DECIGOでは,このイベントを,地上検出器の観測周波数帯に入る数年前から観測することができ,上述のように合体時期の予測を行うことができる.さらに,DECIGOの感度では,このような連星を年間数万個程度観測できると見積もられており,一般相対性理論の検証や中性子星の状態方程式に関する情報が得られることが期待できる.また,DECIGOでは,宇宙論的な距離にある太陽質量の1000倍程度のブラックホール連星の合体を観測することができる.これによって,銀河の中心にあると考えられている超巨大ブラックホールや,銀河の形成メカニズムを解明することが期待できる. 特に複数台の干渉計を用意できれば重力波源に対する角度分解能は大幅に向上するので,従来の電磁波観測との連携による大きな相乗効果も期待できる.

ただ, DECIGO のような大規模な観測装置を実現するためには,入念な地上試験と,宇 宙実証試験が不可欠である.そこで,DECIGO は,2回の前哨衛星を打ち上げる計画になっ ている(図 6).その1機目が,本文書で提案している DPF (DECIGO Path Finder)であり,

¹⁰その一例として,宇宙全体のエネルギーの約 3/4 を占めるとされるダークエネルギーの性質を決めること が挙げられる.遠方の超新星爆発の観測等は,最近の宇宙の膨張速度が時間と共に加速していることを示唆し ており,その要因は,負の圧力を持つ「ダークエネルギー」に起因していると説明されている.しかし,この ダークエネルギーの正体は判っておらず,現在の素粒子と宇宙物理学における最大の難問とされている.ダー クエネルギーの研究における基本的な手法として,天体の「赤方偏移と距離の関係」を詳細に調べる方法があ り,超新星爆発の観測もこれを利用している.天文学において,距離を決定することは本質的な意味を持つが, 経験則に依存するなど,様々な不定性を内包していることが多い.しかし,連星の重力波を観測することによ り,従来と独立な方法で距離を決定することが可能となる.これは,測定される波の振幅と質量の情報を組み 合わせるものであるが,単純な物理法則に基づいており信頼性が高いものとなっている.一方,波源の赤方偏 移を重力波観測だけで決定するのは困難である.しかし,以下の手法で波源の母銀河を同定すれば赤方偏移の 決定も可能となる.まず DECIGO の軌道運動によるドップラー効果を使って連星の方向を推定することができ る.図4 で示されたシステム複数台を離して配置し,time-delay 効果を利用すれば角度分解能はさらによくな り,赤方偏移が1 程度の連星中性子星でも数分角程度以内に絞りこむことができる.また,重力波の波形進化 を通して,連星の合体する時刻も予言できるので,その時刻に望遠鏡を連星の方向に向けて,ショートガンマ 線バーストなどの電磁波の対応現象を探査し,母銀河を同定するのである.

DECIGO を使ったダークエネルギーの研究手法として宇宙の加速膨張を直接計測する可能性も検討されている.通常,宇宙膨張によって生じる時間的な効果は,観測者にとってソースの時間が単純に引き延ばされること,言い換えると"膨張速度"によるドップラー効果として捉えることが出来る.しかし,連星中性子星が極めて正確な時計であることを使えば,この単純な関係を超えて,宇宙の"膨張加速度"による補正効果を検出できるかもしれない.これは同一のソースに対して時間経過とともに"膨張速度"が変化すること,つまり"膨張加速度"を直接捉えるというものである.連星中性子星からの重力波を,合体の5年前から観測した場合,この補正効果は重力波の到着時間に換算して,1秒程度の小さなずれを生む.DECIGOを使えばこのような高精度の測定も出来るようになり,宇宙膨張を支配しているダークエネルギーの性質に迫る新たな手がかりを与えるかもしれない.

図 6: DECIGO 実現までの開発ロードマップ. 2024 年の DECIGO 実機の打ち上げ前に,2 回の前哨衛星 (DECIGO Path Finder, Pre-DECIGO) を打ち上げる計画になっている.そ の最初のものが,本提案書の DPF である.

2機目が, Pre-DECIGO となっている.

DPFは、1機の100kg級小型衛星であり、安定化レーザー光源と2つの鏡(試験質量)で 構成された短基線長のファブリ・ペロー干渉計、ドラッグフリーシステムを搭載する(図7). これはDECIGOの基線長1000kmの干渉計を短縮して1機の衛星内に収めたものという位 置づけになり、DECIGOと同様に、重力波によるファブリ・ペロー干渉計の基線長変化を、 安定なレーザー光によって観測するものである.また、それに伴い、DECIGO実現のため に重要な開発項目である、(1)衛星のドラッグフリー制御、(2)レーザー光源とその安定化シ ステム、(3)レーザー干渉計制御、(4)クランプ・リリース機構、の4つの宇宙実証試験を行 う.また、上記の全てのシステムを動作させた状態で、低周波数帯(0.1-1 Hz)での重力波の 観測を行う.これまでにこの周波数帯で実際に重力波を観測した例は無いため、DPFでは、 十分に科学的な意味のある観測が期待できる.一方、Pre-DECIGOはDECIGOと同様に3 機のS/Cで構成されており、DECIGOよりも1-2桁低い感度での重力波観測を行う予定に なっている.

図 7: DECIGO パスファインダーの概念図.DECIGO の1本の腕共振器を1つの衛星内に 収めた構成に相当する.重力波によるファブリ・ペロー干渉計の基線長変化を,安定なレー ザー光によって観測するものである.安定化レーザー光源,ファブリ・ペロー干渉計,ドラッ グフリーシステムが搭載される.

2 目的

2.1 ミッションの目的

本ミッションの目的は,100kg級の小型衛星 DPF (DECIGO Path Finder)を地球周回軌 道に打ち上げ,将来の宇宙大型重力波望遠鏡 (DECIGO)実現のために特に重要な項目に関 する宇宙実証試験を行い,さらに,0.1-1 Hz 付近の周波数帯で実際に重力波観測を行うこと を目的とする.技術試験項目としては,下記の4項目が主なものとして挙げられる.

● 項目1: 衛星のドラッグ・フリー制御の実証試験

DECIGO では,干渉計を構成する鏡(試験質量)は,太陽光圧変動,太陽風などの外 乱の影響を直接受けないようにS/C内に非接触保持される.この時,S/C自身の変動 が,重力や電磁力を介して鏡の変動を引き起こさないよう,鏡に対してS/Cは相対的 に静止するよう制御されている必要がある.この制御はドラッグフリー制御と呼ばれ, S/Cと鏡の相対位置変動をS/C内のローカルセンサーで読み取って,S/Cに取り付け られたアクチュエータ(スラスターや姿勢制御用ホイール)にフィードバックすること で実現される.DPFでは,このドラッグフリー制御システムを,無重力環境下で実現 し,実証する.

• 項目2: レーザー光源とその安定化システムの宇宙実証試験

DECIGO では,安定で高出力なレーザー光源が必要とされており,出力 10W の倍波 Nd:YAG レーザー光源(波長 532nm)に周波数安定化システムを組み込んだものが使用 されることになっている.DPF では,出力 100 mW の倍波 Nd:YAG レーザー光源と その周波数安定化システムを搭載し,宇宙環境での動作を確認すると共に,DECIGO に必要な安定度が実現できていることを確認する.

項目3:レーザー干渉計制御の宇宙実証試験

DECIGOでは、それぞれのS/C内に保持された鏡の間で基線長 1000kmのファブリー ペロー干渉計を構成し、その基線長変化を読み取り、制御する必要がある.このよう に、無重力下に置かれた鏡間でファブリペロー干渉計を構成して制御し、それらの相 対位置変化を測定した例は過去になく、実証試験を行う必要がある.そこで、DPFで は、S/C内に非接触保持された2つの鏡で基線長10cmのファブリペロー干渉計を構 成し、その光干渉計制御系の実証試験を行う.

● 項目 4: クランプ・リリース機構の宇宙実証試験

DECIGO では,干渉計を構成する鏡(試験質量)は,S/C打ち上げの際には,振動に よる破損を防ぐためのクランプによって保持されており,軌道投入後にリリースされ S/C内に非接触保持されることになる.打ち上げ時の激しい振動に耐えるような強度 を持ちつつ,軌道投入後に小さな初速でリリースすることは容易ではなく,十分な検 討と実証試験が必要である.そこで,DPFでは,このクランプ・リリース機構の宇宙 実証試験を行う.

一方,本計画では,科学的な目標として,下記の項目を挙げる.

• 項目 5:低周波数帯 (0.1-1 Hz) での重力波の観測

DPFでは、上記の各システムをすべて動作させた上で、重力波の観測を行う.この装置は、0.1-1 Hz の周波数帯で $10^{-14}/\sqrt{\text{Hz}}$ 程度の重力波に対する歪み感度限界を持つことになる.地球の近くを周回する小型望遠鏡であるために、この感度は、これまで地上で実現されている重力波望遠鏡や、LISAやDECIGOの感度には及ばないが、この周波数帯で実際に重力波を観測した例はこれまでに無い.銀河中心にあるブラックホールの準固有振動からの重力波はこの周波数帯で放射されると見積もられており、そのようなイベントがあれば検出することも期待できる.一方、実際の重力波が検出されなくても、その波源に対するこれまでの世界最高感度での観測と、重力波振幅に対する上限値を与えることが期待できる.また、それに伴い、衛星内や地上局を含めたデータの処理や解析体制を整えることも目的とする.

2.2 ミッション成功基準

このミッションでの成功基準を下記に挙げる.

• 最低成功基準

打ち上げ時に試験質量を固定していたクランプを開放し,試験質量がきちんとリリースされていることを確認する(上記の項目 4).さらに,衛星と試験質量間の相対変動をローカルセンサーで読みとり,試験質量にフィードバックすることで試験質量を非接触保持する(項目 1 前半).また,倍波 Nd:YAG レーザー光源とその安定化システムを動作させ,その安定度を評価する(項目 2).その光源を用いて,2つの試験質量間で構成されたファブリ・ペロー共振器を安定に制御し,その基線長変動を測定する(項目 3).

• 成功基準

試験質量と衛星との相対位置変動を衛星に取り付けられたアクチュエータ(スラスタ と姿勢制御用ホイール)にフィードバックし、ドラッグ・フリー制御を実現する(項目 1後半).また、レーザー光源を安定化システムの残留雑音を目標レベルまで安定化す る.2つの試験質量間で構成されたファブリ・ペロー共振器の基線長変動を連続測定 するとともに、変動量を重力波振幅に換算するためのキャリブレーションを行い、重 力波の観測を行う(項目 5).その結果、得られたデータを解析することで、重力波の 上限値を得る.また、各モニター信号を解析することによって、装置の状態や、衛星 内環境の情報を把握する.

• 超過成功基準

散射雑音など,干渉計の原理的な雑音のみで制限されるアンテナ感度を実現する.地 上からの指令によって装置の制御特性をチューニングし,装置の感度・安定度を向上 させる.6ヶ月以上にわたる観測を行い,重力波信号の探査を行う.また背景重力波に 対する上限値と,その空間分布を求める.もし,他の天文観測から重力波イベントと なり得る現象が報告された場合,その前後の時間帯のデータを調べることでそのイベ ントに対する上限値を与える.

図 8: DPF (DECIGO Path Finder) **の**ミッション機器概念図 . ミッション機器は,大きく 分けて,安定化レーザー光源部,重力波検出器部,ドラッグフリー制御部の3つから構成される.

3 ミッション機器概念設計

DPF の最終目的は,衛星内に搭載された基線長 10 cm のファブリ・ペロー干渉計による 重力波観測である.重力波の効果による,干渉計内の光路長変化を,安定化されたレーザー 光で観測する,というのが重力波の検出原理になる.従って,DPF の各サブシステムは,こ の鏡が他の外乱の影響を受けないように設計される.干渉計を構成する鏡を太陽光圧変動な どの外乱変動から守るために,これらの鏡は,衛星内に非接触保持され,衛星位置は,鏡に 対して相対的に静止しているように制御される(ドラッグフリー制御).また,使用するレー ザー光源は,その周波数雑音が干渉計感度に影響を与えないよう,外部共振器によって安定 化される.

DPFのミッション機器の概念図を図8に示す¹¹.以下,ファブリ・ペロー干渉計部,安定 化レーザー光源部,ドラッグフリー制御部の3つに分けて,各部分の概略を示す.その後, 観測ターゲットとする重力波源と,検出器感度,また,外乱・雑音源を示す.

3.1 ファブリ・ペロー干渉計

重力波検出器となるファブリ・ペロー干渉計は,ドラッグフリー制御によって衛星内に非 接触保持された2枚の鏡(試験質量)で構成される.このファブリ・ペロー干渉計の基線長 は10 cm,フィネス¹²は100とする.

鏡は,直径10cm,厚さ6cm,質量約1kgの溶融石英製で,表面は誘電体多層膜ミラーコー ティングされる.鏡は,それぞれハウジング内に収められる.このハウジングには,鏡の位 置を非接触で駆動するための静電型アクチュエータ,衛星と鏡の相対位置変動を測定するた めのローカルセンサ,衛星打ち上げ時に鏡を保持するためのクランプが取り付けられる.ま

¹¹概念図であり,実際の配置を直接は反映していない.

¹²ファブリ・ペロー共振器の共振の鋭さを表す値.干渉計共振器内での折り返し数に相当する.

た,このハウジングは,静電シールドとしての役割と,周辺機器からのアウトガスの影響を 避けるための容器としての役割も併せ持つ.

安定化レーザー光源から供給されたレーザー光は,適切なモードマッチングを経て,この ファブリ・ペロー干渉計に入射される.基線長変化の信号は,パウンド・ドレーバー法 (PD 法)によって取得される.これは,入射レーザー光に,位相変調を掛け,ファブリ・ペロー 干渉計からの反射光を光検出器で受け,復調することで干渉計の光路長変動信号を得る手法 である.得られた変動信号は,鏡のハウジングに取り付けられたアクチュエータにフィード バックされ,その基線長を一定に保ち,干渉計を動作点に保つよう制御される.このフィー ドバック信号は,重力波に対する感度を持つ信号になる.

3.2 安定化レーザー光源

安定化レーザー光源部は重力波検出器 (ファブリー・ペロー干渉計) に周波数・強度共に安定化されたレーザー光を供給する部分であり,波長 532 nm のレーザー光を発生する光源部とその周波数・強度安定化システムで構成されている.

波長 532 nm のレーザー光は波長 1064 nm の連続波 Nd:YAG レーザー光 (基本波) を非線形結晶を用いて第二高調波変換させる事により得る.基本波用光源は強度・周波数雑音が低いと共に周波数制御性も高いモノリシック型半導体レーザー励起 Nd:YAG レーザー (NPRO) を用いる.この基本波を第二高調波変換するために用いる結晶は,室温下での光学損傷に強く非線形定数の高い MgO 添加 LiNbO₃ であり,周期的に極性を反転させることで長い結晶長で疑似位相整合がとれる周期的反転構造 (PPMgOLN) を用いる.30 mm の長さの PPMgOLN 結晶を用いれば基本波出力 2 W 時に変換効率 15%が得られ,100 mW 以上の 532 nm 光の出力が期待される.

この光に対して高フィネスファブリーペロー光共振器の共振周波数を周波数基準として 周波数安定化を行う.この光共振器は2枚の低損失・高反射鏡を低熱膨張率のセラミック (ULE)製のスペーサーの両端に光学接着することにより構成され,10⁵以上のフィネスを持 つ.さらに輻射熱によるスペーサーの熱膨張を防ぐために光共振器を3重の放射シールドで 覆い,最外殻のシールドは1mKの精度で温度制御を行う.また環境振動の影響による共振 器の安定度の悪化が目標安定度を上回る場合は能動防振装置で共振器と光源全体の防振を行 う.この安定化周波数基準に対してレーザーの周波数をFM-sideband法を用いて安定化し, フーリエ周波数1Hzに於て目標とされる1Hz/ $\sqrt{\text{Hz}}$ の周波数安定度を実現させる.強度雑 音はInGaAsフォトディテクターで検出し,電気光学素子(EOM)と偏光子により構成され た強度変調器に負帰還制御させることにより強度雑音抑圧を行う.

3.3 ドラッグフリー制御

ドラッグフリー制御は,鏡周囲のハウジングに取り付けられたローカルセンサで,衛星と 鏡の相対位置変動を検出し,その信号を,衛星本体に取り付けられたスラスターと姿勢制御 用ホイールにフィードバックすることで実現される.

ローカルセンサーとしては,静電型センサーを用い,衛星本体と2つの鏡それぞれの計12 自由度の相対変動を検出する.これらの信号は,適切な線形演算を経て,鏡アクチュエータ, 衛星スラスタ,衛星姿勢制御用ホイールのそれぞれへフィードバックされる.スラスタとし

図 9: DPF の感度・雑音スペクトルの見積り.最も感度の良い周波数帯 (0.3 Hz 近辺) で, $h_{\rm c} \sim 10^{-15}$ 程度の感度になる.量子雑音などの原理的な雑音で決まる感度限界は,1/10-1/30程度低いレベルにある.

ては,太陽光圧等の外力を十分に抑圧するだけの最大推力と,十分広いドラッグフリー制御 帯域を実現するための応答速度,スラスタ自身の雑音が問題にならないだけの低雑音,半年 間の運用に耐えられるだけの総推力が要求される(表5参照).また,小型・軽量であること も重要である.DPFでは,最大推力 100μ N,推力雑音 0.1μ N/ \sqrt{Hz} ,応答速度10 Hz以上, $10^4 N \cdot s$ 以上の総インパルスといった性能を持つ小型・低雑音の電気推進スラスタを用いる.

3.4 重力波検出器感度と観測ターゲット

DPF で期待できる重力波に対する感度と、この周波数帯で期待できる重力波源を図9に 示す.この図では、観測周波数幅が、周波数に一致するものとして、縦軸は重力波振幅(無 次元の歪み量)に換算している.DPFは、0.1-1 Hz あたりで最高感度を持ち、下記のブラッ クホールに関連した重力波現象が観測対象となり得る.

• 中間質量ブラックホール連星の合体

ブラックホール連星が合体するとき,周波数が次第に高くなっていくチャープ波と呼ばれる重力波信号が放射される.この波形は,理論的に正確に計算することができるため,観測によって得られたデータと,予想波形の相関を調べることによって,信号/雑音比 (SNR, Signal-to Noise Ratio)を稼ぐことができる¹³.DPF では, $10^3 - 10^4 M_{\odot}$ 程度の質量を持つ中間質量ブラックホール連星合体からの重力波が観測周波数帯域内に入る. $10^3 M_{\odot}$ 連星の場合,4 Hz付近で合体することになり,この周波数でバースト的な重力波が放射されるはずである.

大質量ブラックホールの準固有振動

 $^{^{13}}$ 観測周波数帯域に入ってから合体するまでの時間は , $10^3~M_\odot$ 連星の場合 , 15,000 秒程度 , $5 imes 10^3~M_\odot$ 連星の場合 , 1,000 秒程度になる .

図 10: DPF で期待することができる観測可能範囲の見積り. 横軸は,重力波源となるブラックホールの質量,縦軸は,SNR (Signal-to-Noise Ratio) = 5 で観測可能な距離範囲を示す. 図 9 に示した DPF 感度曲線を用いて,ブラックホール連星の合体 (BH Inspiral) と,ブラックホール準固有振動 (BH QNM) からの重力波それぞれについて計算してある.我々の銀河中心近辺 (地球から 8.5 kpc) でこれらの重力波イベントが発生した場合には,その信号検出が期待できる.

大質量ブラックホールの準固有振動が発生する重力波もこの周波数帯で放射される見 込みである.これは,大質量ブラックホール同士の合体や,大質量ブラックホールに 星などが落ち込むときに励起されたブラックホールの振動が,重力波を放射しながら 減衰していくものである.この波形も,理論的に予測することができ,理論波形と観 測データの相関を取ることで微弱な信号を取り出すことができる¹⁴.

DPF で観測した場合, SNR (Signal-to-Noise Ratio) 5 程度で信号検出が可能な範囲の見 積りを,図10に示す.もし,我々の銀河中心近辺(地球から8.5 kpc)でイベントが発生した 場合には,十分観測することができる見積もりになっている.一方,DPF で観測した結果, 上記の重力波が観測されなかった場合には,そのようなイベントに対する上限値を与えるこ とになる.この周波数帯での重力波観測はこれまでに行われていないため,DPF で得られ る観測データは,地上の検出器では得られない貴重なものになることが見込まれる.

3.5 外乱要因

DPF に搭載される重力波検出器は,重力波の影響によって引き起こされる,2つの試験質 量間の光路長の微小変動を干渉計を用いて検出するものである.重力波信号は非常に小さい ため,さまざまな外乱の影響を考慮しておく必要がある.図9の感度曲線は,それらを考慮 に入れて求められている.以下に,考慮すべき外乱・雑音要因を示す.

¹⁴この減衰振動の Q 値は,ブラックホールのパラメータ (質量,角運動量) に依存する.減衰が早い場合 (質量によって無次元化された角運動量が小さい場合) には,数周期で減衰することが予測されている.

試験質量に直接働く外乱

重力: 天体重力, 衛星自身の重力, 地球重力 電磁力: 惑星間磁場, 衛星自身の磁場, 地球磁場, ローレンツ力 その他の力: 残留ガス分子の衝突, 宇宙線の衝突, 熱輻射圧力

衛星に働く外乱

太陽の輻射圧力

地球大気との摩擦力

衛星自身の振動: スラスタ, モメンタム・ホイール, 電気・電子機器

• 干渉計による読み取り雑音

光の量子雑音

試験質量の熱振動

レーザー光源の雑音:周波数雑音,強度雑音,ビームジッター雑音

これらの外乱・雑音評価の詳細は,補遺Aにまとめる.DPFの感度は,低周波数帯では 加速度雑音(残留気体分子の衝突,地球重力場,衛星磁場,ハウジングの熱輻射など),高周 波数帯ではレーザー光源の周波数雑音によって制限される見込みである.量子雑音・熱雑音 といった原理的な感度限界は,加速度雑音・レーザー周波数雑音レベルより1/30程度低い レベルにある.

	表 2: DECIGO パスファインダーの 主要緒元				
全体	打上げ時期	2012 年ごろ			
	重量:	$100 \mathrm{kg}$			
	サイズ	$700 \times 700 \times 700 \mathrm{mm}$			
	軌道:	高度 $750\mathrm{km},$ 太陽同期極軌道 $,3$ 軸姿勢制御			
	その他:	衛星中央部の 400 mm 立方をミッション機器スペースとする			
仕様	電源電圧	$\pm 15 V, +5 V, +3.3 V$			
	消費電力:	バス系 60 W (INDEX の最大値 54.5 W(日陰時)より)			
		ミッション系 50 W			
		推進系 50 W			
	推力	0-100μN 可変 , 低雑音			
	姿勢制御	360deg / 1rev. (常に y-z 面を太陽 , x-y 面を地球に向ける .)			
	データレート	5 kbps			
	動作温度範囲	-40 - +80			
	耐振動	$25\mathrm{G}$			
	残留磁気	0.5 Gauss 以下			
	アウトガス	TML 1% 以下			

4 衛星システム概要

4.1 ミッション構成・軌道

DECIGO パスファインダー (DPF) は,後に続く pre-DECIGO, DECIGO のための技術 試験を,地球周回軌道上において行ものである.また,DECIGO 実現へのロードマップ(図 6)を考えると,DPF は一刻も早く実現されることが望ましい.したがって,すでに小型衛 星としての実績を持つ JAXA/ISAS のオーロラ観測衛星「れいめい (INDEX)」の技術を基 本とした衛星とする.

衛星全体の主要諸元を表 2 に示す.衛星の衛星総重量は 100 kg, 大きさは, 700 mm 立方 とする.重量配分は表 3 に示す.この重量の配分は INDEX を参考に算出した.構体の中央 には,400 mm 立方の観測機器スペースを確保し,試験項目 (2)-(4) に相当する機器を納め る.消費電力としては,合計 160 W を見込む.

衛星軌道

DPFは,高度750kmの太陽同期軌道をとる.科学目標としての観測(項目5)¹⁵を優先させると,DPFでもDECIGO同様にできるだけ地球から離れることが要求されるため,高高度の地球周回軌道か,ラグランジュ点に置くことが望まれる.しかし,技術試験項目(項目1-4)では,高高度の軌道要求はなく,軌道を比較的任意に選ぶ事ができる.そこで,DPFを打上げる機会を増やす事から,

- 小型ロケットでのシングルロウンチ
- 大型ロケットで大型衛星のピギーとしての打ち上げ

¹⁵先述されているように, DECIGO Path Finder のミッション目的は, 技術項目として (1) 衛星のドラッグ フリー制御, (2) レーザー光源とその安定化システム, (3) レーザー干渉計制御, (4) クランプ・リリース機構, 科 学目標として (5) 低周波数帯 (0.1 - 1 Hz) での重力波の観測, である.

	DPF	参考:INDEX
電源系	16.5	16.5
通信系	2.4	2.4
データ処理系	4.1	4.1
姿勢制御 ^a	7.6	8.4
構造系。	23.6	12.0
電気計装系	5.1	5.1
機械計装系	8.4	8.4
熱計装系	0.3	0.3
推進系	12.0	0.0
ミッション系	20.0	11.4
合計	100.0	68.6

表 3: DPF の重量配分 (単位: kg). 全重量で 100 kg を見込んでいる.

 a STT を除く $+ \alpha$

^b INDEX サイズ 500 mm より, (700/500)² 倍

の両方での打ち上げの可能性を残すという観点から,汎用性の高い「高度 750 km の太陽 同期軌道」を想定した衛星としている.その一方で,衛星の高度が変わっても対応できる冗 長性を持たせた設計にする.

電力の確保のため,衛星は太陽-地球を結ぶ直線に垂直な面内を運動する軌道(太陽同期軌道)に投入される.この軌道では,日照時と日陰時の温度差が問題にならないため,温度安定性の向上も期待できる.

鏡の運動

重力波検出器を構成する 2 つの鏡 (試験質量) はできるだけその相対距離が変わらない軌 道上を運動している事が望ましい.そこで,DPFでは,2つの試験質量を結ぶ線 (干渉計の 光軸)が,軌道面内で,地球鉛直方向に垂直になる方向をとるような軌道運動設計になって いる (図 11).図 11 では,地球と衛星を結ぶ軸を z 軸とし,x 軸上に 2 つの鏡が配置された 衛星中心座標を示している.鏡間の距離は,10 cm ほどであり,高度 750 km の軌道に対し て十分小さいため,ほぼ x 軸上に静止しているようになる.

衛星の変動・姿勢制御

上記のような運動をする鏡を,衛星内に非接触で保つためのドラッグフリーを実現するためには,地球の周りを一周する間に,衛星の姿勢は360度回転するような制御が必要となる. その時,衛星は図12のように,y-z面に大気抵抗を受け,y軸方向に太陽がありx-z面に太陽輻射を受ける.よって,太陽電池はx-z面に取り付ける.ドラッグフリーを行うためのアクチュエータとして,スラスタ,リアクションホイール等を用いる.スラスタは,並進・回転ともに制御可能であり,太陽輻射圧や大気抵抗に起因した,鏡と衛星の相対位置のずれをキャンセルする.そのため,スラスタには,これらの外力よりも十分大きな推力(100μ N)が要求される.DPFにとってのドラッグフリーは,鏡が構造体に非接触であるばかりではなく,衛星内の重力場の変動や,磁場の変動による鏡の揺れ,スラスタ自身が生じる変動が十分小さいか,重力波の観測周波数帯(0.1-1 Hz)とは異なる周波数帯である事が要求される.

図 13: DPF のシステムブロック図.重力波検出器となるレーザー干渉計部,安定化レーザー 光源部,ドラッグフリー部のミッション機器と,構造体,電力,通信や,温度といった衛星 システム部で構成され,それらが衛星バスシステムで結ばれ,制御されることになる.

4.2 衛星システム構成

DPF 衛星のシステムブロック図を図 13 に示す. DPF は,重力波検出器となるレーザー 干渉計部,安定化レーザー光源部,ドラッグフリー部のミッション機器と,構造体,電力, 通信や,温度といった衛星システム部で構成され,それらが衛星バスシステムで結ばれ,制 御されることになる.

4.3 データ処理

DPFの観測は,干渉計の光路長変動を測定することによって行われ,観測データは,連続した時系列データとなる.DPFの観測周波数帯は,0.1-1 Hz であり,これより十分早いサンプリングレートでのデータ取得が要求される.また,衛星内では,干渉計やレーザー光源安定化システムでの制御,ドラッグフリー制御では,10 Hz から数十 Hz での帯域での制御が必要と見込まれており,それよりも1桁程度高いサンプリングレートでのデータ取得が必要となる.その一方で,地上局との通信によって転送可能なデータレートは5kbpsを想定している.従って,制御信号を全て地上に送ることは不可能であり,ダウンサンプリングや信号の取捨選択などの前処理を衛星内で行った後,地上に転送することになる.

目安として,ダウンリンクのデータレートを 5120 bps,コマンドテレメトリ 512 bps とし,以下の信号レートでの通信を行うこととする¹⁶.

• 重力波信号を含む主な信号: 4096 bps (16 Hz sampling, 16 bit, 16 channel)

¹⁶実際は,データの圧縮処理や,ヘッダ・フッタの付加などがあるため,データ量は増減することになる.

- 衛星内環境モニタ信号: 1024 bps (1 Hz sampling, 16 bit, 64 channel)
- コマンドテレメトリ: 512 bps

また,各サブシステムや衛星の状態を把握するために,ダウンサンプリングをしていない 制御信号データを地上に送ることもできるように設計をする.16 bit,100 Hz サンプリング の 64 チャンネル分のデータを,1日分バッファしておくためには,衛星内に1GByte ほど の記録メモリが必要になる.

5 スケジュール・予算・人員

ここでは,現時点での衛星開発体制と,スケジュール,費用の見積もりを示す.ただ,こ れらは,これまでに行われた概念設計検討や衛星開発の現状をもとに一つの方向性を示した ものである.これらの方針は,今後の詳細な衛星設計や基礎実験結果,衛星開発を取り巻く 状況の変化に対応して,柔軟に改善・変更していく余地がある.

5.1 スケジュール

このミッションは6年計画で行う.

- •1年目:概念設計,および各要素のブレッドボードモデル開発 衛星の概念設計を行い,それを基にして要素技術の開発を行なう.概念設計に際しては,この衛星で得る事のできる科学的成果について詳細かつ定量的に検討をし,それに基づいてレーザー光源,外部共振器による光源周波数安定化,鏡の姿勢制御,干渉 計光学素子,制御回路,S/C機器それぞれの要素に対する要求値を定める.また,それを満たす各要素の設計とブレッドボードモデルの開発を行なう.
- 2年目:ブレッドボードモデルの性能評価とエンジニアリングモデルの設計
 各要素ブレッドボードモデルの性能の評価と性能の向上実験を行い,雑音に関して所定の要求値を満たすよう改良を行う.また,それらを元にエンジニアリングモデルの設計に取り掛かる.
- 3年目:エンジニアリングモデルの製作
 各開発要素に関してエンジニアリングモデルを製作し,宇宙環境試験を行う.また,要素間のかみ合わせ試験を行い,フライトモデルの詳細設計を完成させる.
- 4年目:プリ・フライトモデルの製作と試験
 実際に打ち上げる衛星仕様での試験機 (プリ・フライトモデル)を製作し,振動試験, 宇宙環境試験等の各種試験を行う.
- 5年目:フライトモデルの製作と試験
 フライトモデルの製作と試験を行なう.
- 6年目:打ち上げ,軌道上技術試験と観測
 衛星を打ち上げ,軌道上での宇宙実証試験を行う.その後,半年間の重力波観測を行なう.
- 5.2 費用

DPF 開発費用の見積りを表4に示す.衛星開発費用として総計で8億円としている.こ れは、2005年に打ち上げられたオーロラ観測衛星「れいめい」の開発費を基本として見積 もられている.「れいめい」衛星(約70kg)と比較して、DPF 衛星(100kg 級)は、やや重量

項目 細目	費用	備考
ミッション機器		予備部品も含む
レーザー光源	20	
干渉計用鏡	20	
周波数安定化光学系	20	
干渉計鏡八ウジング	30	
その他光学系	30	熱シールド・温度安定化を含む
干涉計制御回路	40	
ドラッグフリー用センサ	20	
コンピュータ・インターフェース	40	
小計	220	
衛星バス系		
電源ユニット	40	太陽電池パネルを含む
衛星制御回路	20	
衛星姿勢制御装置	50	スラスタを含む
データ通信装置	30	地上でのデータ取得・解析装置
コンピュータユニット	40	
小計	180	
開発費		
プリ・フライトモデル	80	
ブレッドボードモデル	80	
試験費用	70	
測定機器	70	
人件費	100	
小計	400	
衛星開発費計	800	(単位:百万円)

表 4: DPF 開発費用

が大きいこと,搭載される安定化レーザー光源や干渉計に高度な技術が必要とされること, ドラッグフリー制御のためのスラスタが加わること,研究支援員の雇用を考慮して,DPF 衛星では「れいめい」衛星の開発費である5億円前後(人件費を除く)よりも,3億円程度上 乗せされた費用を見積もっている.

この衛星開発費用は,文部科学省の科学研究費・特定領域研究に2007年度-2012年度の 期間で応募中の「宇宙空間を利用した低周波重力波天文学の開拓」の予算枠を用いる計画に なっている.衛星のロケットでの打上げと運用は,JAXAが公募している「打上げ機会の提 供」を第一候補とする.ただ,ピギーバックによる衛星打ち上げ機会に関する状況は,時間 と共に変化していくことが見込まれるため,さまざまな打ち上げ機会の可能性を模索する必 要はある.いずれにせよ,特定領域研究の研究費内で衛星を開発することができれば,打上 げ機会が得られる可能性は高いものと考えられる.

5.3 開発体制

DPF の開発体制を図 14 に示す.下記のメンバーが, DPF 検討グループとして開発に携わる.

図 14: DPF 各サブシステムの開発体制.

東京大学 理学系研究科 安東 正樹、坪野 公夫、石徹白 晃治、 高橋 走、小野里 光司、沼田 健司 , 穀山 渉 , 樽家 篤史 , 姫本 宣朗 国立天文台 重力波プロジェクト推進室 川村 静児, 新井 宏二, 佐藤 修一, 森本 睦子、苔山 圭以子, 高橋 龍一, 森岡 友子, 固武 慶, 山崎 利孝 宇宙航空研究開発機構 宇宙科学研究本部 高橋 忠幸, 高島 健, 坂井 真一郎, 船木 一幸, 西山 和孝, 國中 均 大阪市立大学 理学研究科 神田 展行, 石原 秀行, 中尾 憲一, 徳田 充 電気通信大学 レーザー新世代研究センター 武者 満, 植田 憲一 東京大学 新領域創成科学研究科 森脇 成典,川浪 徹 カリフォルニア大学 瀬戸 直樹 新潟大学 自然科学系 佐藤 孝 京都大学 生存圈研究所 山川宏 東海大学 工学部 堀澤 秀行 東京大学 工学系研究科 小泉 宏之 コロンビア大学 麻生 洋一

東京大学 総合文化研究科 柴田 大 マックスプランク重力物理研究所 (アルバートアインシュタイン研究所) 高橋 弘毅 ,宗宮 健太郎 産業技術総合研究所 計測標準研究部門 大苗 敦 , 池上 健 大阪大学 理学研究科 田越 秀行 弘前大学 理工学部 浅田 秀樹 東京大学 宇宙線研究所 三代木 伸二 , 徳成 正雄 , 阿久津 朋美 テキサス大学 重力波天文学センター 端山 和大 ,中野 寛之 情報通信研究機構 新世代ネットワーク研究センター 細川 瑞彦 , 長野 重夫 京都大学 理学研究科 中村 卓史,田中 貴浩,井岡 邦仁 東京大学 ビッグバン宇宙国際研究センター 横山 順一 京都大学 大学院 人間・環境学研究科 阪上 雅昭

6 まとめと波及効果

宇宙重力波望遠鏡 DECIGO では,0.1 Hz 付近の周波数帯を観測することで,宇宙の起源 や構成に対する知見,ブラックホールに関係した激しい天体現象に対する知見といった,宇 宙に対する新しい知見を得る事が期待できる.これは,これまで主に行われてきた電磁波に よる天文学とは相補的な情報であり,また,計画中の他の重力波望遠鏡では手に入れること ができない新しい科学的成果になるはずである.しかし,DECIGO 実現のためには,克服 しなければならない技術目標が数多くあり,それらを段階的に達成していくことが不可欠で ある.

そこで、その中でも特に重要と考えられる技術に関して宇宙実証試験を行うと共に、実際の 重力波観測を行うことを目指し、100 kg 級の小型衛星 DECIGO パスファインダー (DECIGO Path Finder, DPF)の打上げを目指している.DPF は、高度 750 km の地球周回軌道に投入 され、衛星内には、ドラッグフリー制御によって非接触保持された2つの試験質量(鏡)と安 定化レーザー光源を搭載する.これらの鏡で構成された基線長 10 cm のファブリ・ペロー干 渉計の基線長変化を、安定化倍波 Nd:YAG レーザー光源を用いて測定することで、0.1-1 Hz 付近での重力波観測を行う.また、その過程で、DECIGO 実現のために重要な開発項目で ある、(1)衛星のドラッグフリー制御、(2)レーザー光源とその安定化システム、(3)レーザー 干渉計制御、(4)クランプ・リリース機構、の4つの宇宙実証試験を行う.DPF がターゲッ トとしている周波数帯では、これまでに実際に重力波を観測した例は無い.その一方で、銀 河中心ブラックホールの準固有振動や、中間質量ブラックホール合体からの重力波は、この 周波数帯で放射されていることが予想されている.DPF では、貴重な観測データを得るこ とが期待できる.

一方,本ミッションの開発と観測の結果に付随して周辺分野への波及効果も期待できる. DPFは,宇宙空間でドラッグフリーを行うことによって実現された安定な環境下において, レーザー干渉計を組み合わせた精密計測を行うものである.この精密計測技術を生かし,重 力の逆二乗則の検証実験などの基礎物理実験に応用することも考えられる.これまでの科 学・天文衛星は,宇宙望遠鏡やX線天文衛星に代表されるように,地球の大気の影響を避 けるために宇宙空間を利用しているものが主であった.それに対して,近年では,一般相対 性理論の検証を目的とした重力探査衛星(Gravity Probe B)のような微小重力環境を利用し た精密計測や,それを用いた基礎物理学実験が多く提案されるようになってきている.地 上での精密計測実験では,地球重力場や地面の振動,温度・大気圧等の環境の変化によって 測定精度が制限され易い.それに対して,宇宙では,安定な微小重力環境を生かした精密 計測が期待できる.また,技術的な面に関しては,本ミッションで実証するドラッグフリー 技術は,宇宙空間に複数のスペースクラフトを打ち上げ,それらの間の距離を精密に保つ, フォーメーションフライトの基礎となる.この技術は,地球環境観測衛星や,X線望遠鏡, 太陽系外惑星探査望遠鏡などへの応用が考えられる.

DECIGO によって,新しい宇宙像と豊かな科学的成果が期待され,また,それに用いられ る精密計測技術やドラッグフリー技術にはさまざまな応用が考えられる.従って,そのため の最初のステップである DECIGO パスファインダー計画を進めることは非常に重要である.

補足資料

図 15: DPF における各種雑音の影響.黒実線が,DPF の感度見積もりを表す.量子雑音・ 熱雑音といった原理的な感度限界は,加速度雑音・レーザー周波数雑音レベルより 1/30 程 度低いレベルにある.

A 外乱・雑音の見積り

DPF に搭載される重力波検出器は,重力波の影響によって引き起こされる,2つの試験質 量間の光路長の微小変動を干渉計を用いて検出するものである.重力波信号は非常に小さい ため,さまざまな外乱の影響を考慮しておく必要がある.ここでは,以下の外乱・雑音要因 を評価する.

- 試験質量に直接働く外乱
 - 重力:天体重力,衛星自身の重力,地球重力
 - 電磁力:惑星間磁場,衛星自身の磁場,地球磁場,ローレンツ力
 - その他の力:残留ガス分子の衝突,宇宙線の衝突,熱輻射圧力
- 衛星に働く外乱
 - 太陽の輻射圧力
 - 地球大気との摩擦力
 - 衛星自身の振動: スラスタ, モメンタム・ホイール, 電気・電子機器
- 干渉計による読み取り雑音
 - 光の量子雑音
 - 試験質量の熱振動
 - レーザー光源の雑音: 周波数雑音, 強度雑音, ビームジッター雑音

外乱・雑	音要因	力の大きさ	鏡の相対加速度	干涉計加速度雑音	干涉計変位雑音
		[N]	$[m/s^2]$	$[m/s^2/\sqrt{Hz}]$	$[m/\sqrt{Hz}]$
試験質量	に直接働く外乱				
重力	太陽	6.0×10^{-3}	7.9×10^{-15}		
	月	3.3×10^{-5}	1.7×10^{-14}		
	衛星	1.5×10^{-9}	9.9×10^{-10}		
	地球	7.8	3.3×10^{-12}	3.0×10^{-16}	
電磁力	衛星磁場	1.2×10^{-14}		1.5×10^{-16}	
	ローレンツカ	$3.5 imes 10^{-14}$		6.9×10^{-18}	
その他	残留気体分子			8.6×10^{-16}	
	宇宙線の衝突	1.1×10^{-17}		1.8×10^{-18}	
	熱輻射			1.5×10^{-16}	
衛星に働	く外乱				
	太陽輻射圧	1×10^{-5}		1.6×10^{-18}	
	地球大気の摩擦	7×10^{-6}			
	衛星スラスタ	1×10^{-4}		$6.3 imes 10^{-17}$	
干渉計の	雑音				
	散射雑音				2.7×10^{-18}
	レーザー輻射圧	5×10^{-8}		8.2×10^{-17}	
	鏡の熱雑音				2.0×10^{-17}
	光源周波数雑音				1.8×10^{-16}
i	合計 (2 乗和の平符	亍根)		9.4×10^{-16}	1.8×10^{-16}

表 5: DPF 重力波検出器の主な外乱・雑音の評価.力の大きさ・鏡の相対加速度は,静的な 値を表す.干渉計に対する加速度雑音と変位雑音は,0.1 Hz での値を記載している.

これらの外乱・雑音を評価した結果を表5にまとめる.(計算に用いたパラメータ類は,表 8,9参照.)試験質量や衛星に加わる静的な力の大きさの値は,制御アクチュエータのレン ジ設計の際に必要な情報となる.それに対して,変位雑音(δx)と加速度雑音(δa)は,観測 周波数帯での重力波に対する感度を制限する要因となる.重力波検出器に対する,変位雑 音・加速度雑音の影響は,

$$\delta h_{\rm disp-noise} = \frac{\delta x}{L}, \quad \delta h_{\rm acc-noise} = \frac{\delta a}{(2\pi f)^2 L} \quad [1/\sqrt{\rm Hz}]$$
(1)

で換算することができる.ここで,L = 0.1 [m] は干渉計の基線長,f は注目している周波数を表す.加速度雑音は,主に残留気体分子の衝突,地球重力場,衛星磁場,ハウジングの熱輻射の寄与を受けており,合計で, $\delta a_{tot} = 9.26 \times 10^{-16} \text{ [m/s}^2/\sqrt{\text{Hz}}$]になる.干渉計での検出の際の変位雑音としては,入射レーザー光の周波数雑音が主になっている.これらの雑音の影響を図 15 に示す¹⁷.

A.1 試験質量に直接作用する外乱

A.1.1 重力

天体重力場の影響

¹⁷この文書での見積もりでは,衛星と試験質量の相対距離変化を測定するためのローカルセンサや試験質量の 制御に用いるアクチュエータによる雑音の影響は含まれていない.

化 0. 人件生力による叫祭員里间の伯刃加还反						
天体	質量	距離*	潮汐加速度			
	[kg]	[m]	$[m/s^2]$			
太陽	1.9891×10^{30}	1.49×10^{11}	7.92×10^{-15}			
水星	3.3021×10^{23}	$9.17 imes 10^{10}$	5.71×10^{-21}			
金星	6.0477×10^{24}	4.14×10^{10}	9.15×10^{-19}			
火星	6.4192×10^{23}	$7.83 imes 10^{10}$	1.78×10^{-20}			
木星	1.8992×10^{27}	$6.28 imes 10^{11}$	1.02×10^{-19}			
土星	$5.6866 imes 10^{26}$	1.27×10^{12}	3.62×10^{-21}			
天王星	$8.6850 imes 10^{25}$	2.72×10^{12}	5.72×10^{-23}			
海王星	1.0247×10^{26}	4.35×10^{12}	1.66×10^{-23}			
月	7.3483×10^{22}	3.844×10^8	1.73×10^{-14}			
* /	* ^ + * * / 2 ~ 14 + 1 ~ +					

主 6. 工体電力に トス試験短号問の相対加速度

* 公転半径の地球との差で見積もっている.

太陽・惑星などの天体の重力場は,2つの試験質量に潮汐力の効果をもたらす.ここでは, 天体が試験質量から十分離れており,その大きさが無視できる $(L/r \ll 1, r:$ 天体までの距離,L: 干渉計基線長) と近似して,その大きさを見積もる.干渉計を構成する鏡が天体の重力から受ける光軸方向の加速度は,

$$a_{\rm grav} = \frac{\mathbf{F}_{\rm grav} \cdot \mathbf{n}}{m} = \frac{GM_{\rm s}}{r^3} (\mathbf{r} \cdot \mathbf{n}) \tag{2}$$

である.ここで, r は, 天体から干渉計中心までのベクトル, n は, 干渉計の光軸に平行な 単位ベクトルである.従って, 2つの鏡間の光路長方向の相対加速度は,

$$\Delta a_{\rm grav} = a_{\rm grav,1} - a_{\rm grav,2} \simeq \frac{GM_{\rm s}L}{r^3} (3\cos^2\theta - 1) \tag{3}$$

となる.式より,この潮汐力の効果は,干渉計の光軸と,天体の位置ベクトルのなす角 θ の関数で表されることが分かる.この値が最大になるのは,光軸上に天体があるとき ($\theta = 0$)で,

$$\Delta a_{\rm grav} = \frac{2GM_{\rm s}L}{r^3} \tag{4}$$

となる¹⁸.太陽系の主な天体に対してこの影響を見積もったものを表 6 にまとめる.太陽と 月 (それぞれ 7.9 × 10⁻¹⁵ m/s², 1.7 × 10⁻¹⁴ m/s²) の影響が大きいことが分かる.

以上で計算された値は,定常的 (DC) な潮汐加速度である.衛星スピン等の効果で変動周 波数がアップコンバートされる可能性はあるが,DPF がターゲットとしている 0.1-1 Hz の 周波数帯でのスピンでなければ,直接の雑音源とはならない.

衛星重力場の影響

衛星自身が作る重力場変動も干渉計雑音となり得る.厳密に計算するためには,衛星の重 力分布を元に積分計算を行う必要があるが,ここでは,天体重力場と同様の近似(重力源が 質点という近似)を用いて見積りを行う.

このとき,干渉計が受ける定常的な潮汐加速度は,式(4)と同様になり,2つの試験質量間の距離をL = 10 cm,試験質量と重力源までの典型的な距離をr = 30 cm,重力源の質量

¹⁸天体が光軸に対して垂直な面内にあるとき,潮汐力の効果は逆符号になり,基線長を縮める向きの加速度となる.また, $\cos \theta = \pm 1/\sqrt{3}$ のとき,この潮汐力の効果は0になる.

 $\Delta M_{\rm s} = 2 \, \mathrm{kg} \, \mathrm{と } \mathrm{f} \mathrm{a} \mathrm{c} \mathrm{b} \mathrm{s}$,

$$\Delta a_{\rm grav} = \frac{2G\Delta M_{\rm s}L}{r^3} \sim 9.9 \times 10^{-10} \quad [{\rm m/s^2}]$$
(5)

なる 19 .

一方,天体の場合とは異なり,衛星と干渉計間の距離rは,さほど大きくはないため,衛 星の変動が重力を介して観測周波数帯での試験質量の外乱として現れる可能性もある.この 影響は,衛星変動の1次の効果まで考慮すると,

$$\delta a_{\rm grav, \ sc} = \frac{\partial (\Delta a_{\rm grav})}{\partial r} \cdot \delta x_{\rm sc} \equiv K_{\rm gg} \cdot \delta x_{\rm sc} \tag{6}$$

と書くことができる.ここで, Kgg は, 衛星変動と干渉計変動のカップリング係数で,

$$K_{\rm gg} = \frac{6G\Delta M_{\rm s}L}{r^4} \sim 9.9 \times 10^{-9} \quad [1/{\rm s}^2] \tag{7}$$

となる.衛星重量分布が干渉計に対して対称に配置されている理想的な場合には,この1次のカップリング係数は0にすることができ,2次以上の高次の効果が支配的になる.

地球重力場の影響

衛星軌道高度 $(h_{orb} = 7.5 \times 10^5 \text{ [m]})$ と比べて,地球の大きさ (半径 $r_{earth} = 6.378 \times 10^6 \text{ [m]}$) は無視できない.そのため,地球重力場の影響の見積もりでは,式 (4)を用いることは適切 ではない.ここでは,地球重力場の観測値 [23]を元に,その影響を見積もる.

2つの試験質量が受ける重力加速度をそれぞれ g_1, g_2 とすると,光軸方向に関して,2つの試験質量が受ける相対加速度は,

$$\Delta a_{\text{earth}} = (g_1 - g_2) \frac{L}{2r_{\text{orb}}} \tag{8}$$

となる.ここで,重力加速度が基線長に比べて十分緩やかに変動するという近似を用いると, 試験質量が感じる重力加速度は,それぞれ

$$g_1 = g_0 + \frac{\partial g_0}{\partial x} \frac{L}{2}, \quad g_2 = g_0 - \frac{\partial g_0}{\partial x} \frac{L}{2} \tag{9}$$

と書くことができる.ここで,2つの試験質量はx軸上に配置されているものとして考えている.以上より,地球重力場によって2つの試験質量が受ける相対加速度は,

$$\Delta a_{\text{earth}} = \frac{L^2 g_0'}{2r_{\text{orb}}},\tag{10}$$

となる.ここで, $g_0' = \partial g_0 / \partial x$ は,重力加速度勾配を表す.式(10)は,静的な相対加速度を表しているが,人工衛星が軌道上を運動するとき,この相対加速度が時間変化することになる.

図 16 に,高度 750 km での地球重力加速度揺らぎを示す.地球重力場モデルは,2002 年 に打ち上げられた重力観測衛星 GRACE (Gravity Recovery and Climate Experiment)の観

¹⁹ここでは,1つの質点による効果だけを考えている.複数の質点の重ね合わせ(もしくは,衛星質量分布の 積分)では,この潮汐力の効果をキャンセルするよう配慮た設計にすることができる.

図 16: 高度 750 km での地球重力加速度の揺らぎ (単位: $mgal=10^{-5} m/s^2$).

図 17: 高度 750 km での緯度方向への重力加速度勾配 (単位: 10^{-10} /s²).

図 18: 地球重力場による試験質量間の相対加速度スペクトル.

測結果を利用し,球面調和関数の150次の項までを考慮している.計算には,International Center for Global Gravity Field ModelsのWebページ [23] のサービスを利用した.

図 17 は, DPF の光軸が緯度方向に設定されているとして,緯度方向の重力加速度勾配を 計算した結果である.その最大絶対値は, 1.6×10^{-9} /s² で,式(10)より,地球重力場によ る試験質量間の最大相対加速度は, $\Delta a_{earth, max} \sim 1.6 \times 10^{-18} \text{ m/s}^2$ と十分小さな値になる. ただ,以上の計算は,鉛直方向の加速度が光軸方向へ変換されるカップリング係数が,軌道 の曲率に起因しているとして見積もったものである.現実的に2%のカップリングを仮定す る($L/2r_{orb}$ の代わりに0.02を用いる)と, $\Delta a_{earth, max} \sim 3.3 \times 10^{-12} \text{ m/s}^2$ という値を得る.

人工衛星は軌道運動するため,地球重力場による相対加速度は,観測周波数帯域での変動になり得る.図18は,人工衛星が高度750kmの極軌道を運動する時の加速度雑音スペクトルを表す.0.1 Hzの周波数帯では, $\delta a_{\rm grav} \sim 3 \times 10^{-16} [{\rm m/s^2}/\sqrt{{\rm Hz}}]$ 程度になる²⁰.

A.1.2 電磁力

磁力による外乱

磁場があると,小さいながらも試験質量が磁化される.これが外部磁場変動とカップルして,試験質量への外乱となり得る.

試験質量付近の磁場 (磁束密度) が,一様成分 (B [T]),磁場勾配成分 (B' [T/m]),磁場変動 (δB [T/ $\sqrt{\text{Hz}}$])の重ね合わせて書くことができるとする.このとき,試験質量が受ける力

 $^{^{20}}$ スペクトルの 0.03Hz 付近でのカットオフは,使用した重力モデルの次数が不足しているためとも考えられる.使用した GRACE データは,球面調和関数の 150 次までであり,高度 750km では,大雑把に $2\pi \times (6400 + 750) \text{ km}/150 = 300 \text{ km}$ のスケールの変化に対応する.一方,衛星速度は 7.5km/s なので,300 km のスケール での重力場変動は,0.025 Hz の変動として現れる.図では,50 次の項まで用いた結果も示している.カットオフ周波数が 1/3 程度に低くなっていることが確認でき,モデルが十分でないことを示している.

¹ Hz の変動まで調べるためには,6000 次程度の項まで含む必要があるが,そのような観測結果はこれまでに得られていない.ただ,重力ポテンシャルの影響は $(r_{earth}/r_{orb})^n$ で効いてくるので,地表における各波長の重力ポテンシャルの振幅が同じ場合には,150 次以上の項の影響は,高度 750km では約 20 桁以上小さな効果になる.

表 7: 試験質量付近の磁場の大きさ

	一様磁場	磁場勾配	磁場変動	
	B[T]	$B' [{\rm T/m}]$	$\delta B \left[T / \sqrt{Hz} \right]$	
人工衛星による磁場	8×10^{-7}	3×10^{-6}	1×10^{-7}	
地球磁場	4.6×10^{-5}	4.5×10^{-12}	$3 \times 10^{-11} \times \left(\frac{0.1 \mathrm{Hz}}{f}\right)^{1.2}$	
惑星間磁場	$3 imes 10^{-8}$		$3 \times 10^{-10} \times \left(\frac{0.1 \mathrm{Hz}}{f}\right)$	

の雑音は,

$$\delta F_{\rm mag} = \frac{\chi_{\rm m} V_{\rm p}}{\mu_0} B' \delta B \quad [N/\sqrt{\rm Hz}]$$
(11)

となる.ここで, $V_{\rm p}, \chi_{\rm m}$ は,それぞれ,試験質量の体積と磁化率を表す.この式から,外 乱は,磁場勾配と磁場変動がカップルして現れることが分かる.

2つの試験質量が同じ力を受ければ,相対加速度には,この雑音の影響は現れない.ただ, 磁場や試験質量の物性の非対称性の影響で,ある程度はキャンセルされずに残ることは見込 まれる.その同相雑音の残存比を ϵ_{mag} とする.このとき,試験質量が受ける相対加速度雑 音は,

$$\delta a_{\rm mag} = \frac{\epsilon_{\rm mag} \chi_{\rm m}}{\mu_0 \rho_{\rm p}} B' \delta B \quad [{\rm m/s^2}/\sqrt{\rm Hz}]$$
(12)

となる.ここで, $\rho_{\rm p}$ は試験質量の密度を表す.

磁場の大きさと雑音レベル

表7は、試験質量付近の磁場の大きさをそれぞれの発生源に対して見積もったものである.人工衛星内磁場と惑星間磁場に関しては、文献 [21] を参照した²¹.地球の磁場の影響に関しては、IGRF-10 モデル²²を用いて、地磁気を計算することで評価した.図19は、高度750 km での地磁気 (全磁束密度)の大きさを表している.最大値は、46,000 nT 程度であり、地上の日本付近での地磁気とほぼ同様の値となっている.図20 は、磁束密度ベクトルの緯度方向(南北方向)成分について、緯度方向での磁場勾配を求めたものである、磁場勾配は、最大でも 4.5×10^{-12} T/m 程度の小さな値になっている.

地磁気変動成分に関して,衛星が地磁気内を移動することによる変動と,地磁気自身の変 動の双方を考慮した結果を図21に示す.衛星の移動による変動は,上記と同様にIGRF-10 モデルを用い,衛星が極軌道を周回するとしてスペクトルを求めている.一方,地磁気自身 の変動スペクトルは,国土地理院・江刺地磁気観測所[24]で観測されたデータを元にして いる.この観測データから求めた変動スペクトルを全磁束で規格化した相対変動スペクトル を求め,それに高度750kmでの全磁束を掛けることで求めている.ただ,この観測データ は,1分毎の観測値として提供されているため,DPFがターゲットとしている0.1-1Hz で の変動スペクトル値を直接求めることはできない.そこで,フィッテイングで求めた式を外 挿することで推定している.

 $^{^{21}}$ 衛星内磁場に関しては,双極子モーメント $M_{\rm s}$ が,距離
 rだけ離れて配置されているときの磁束密度は,
 $B=2\mu_0M_{\rm s}/4\pi r^3$ [T] と書くことができる.姿勢制御用の磁気トルカを想定し,双極子モーメント
 $6\,{\rm A\cdot m^2}$ の双極子モーメントが,40 cm の距離だけ離れて配置されているときの磁束密度は,2 × 10⁻⁵ T

程度になる.これを1/25 程度に抑えるよう,双極子モーメントの分布や向きなどの配置を工夫することが要求される.一方,惑星間磁場の値は,Ulysses 衛星の観測結果を元にしている.

²²国際標準地球磁場 (IGRF, International Geomagnetic Reference Field) の第 10 世代モデルのこと. 2005

図 19: 高度 750 km での地球磁場 (全磁束密度)(単位: nT).

図 20: 高度 750 km での緯度方向への磁束密度勾配 (単位: $10^{-12} \, \mathrm{T/m}$).

図 21: 地磁気変動スペクトル.衛星が地磁気内を移動することによる変動と,地磁気自身の変動の双方を考慮している.

上記の結果より,磁場勾配成分・磁場変動成分の双方とも,地磁気や惑星間磁場よりも衛星自身が作る磁場の方が大きいことが分かる²³.このことから,衛星内の磁場勾配・磁場変動の値を用いて試験質量間に働く相対加速度雑音を,式 (12)を用いて求めると, $\delta a_{mag} = 1.5 \times 10^{-16} [m/s^2/\sqrt{Hz}]$ となる.ここでは,同相雑音除去の効果を $\epsilon_{mag} = 0.1$ として計算している.

ローレンツカ

試験質量は,衛星内に非接触に保持されているため,宇宙線の衝突によって試験質量は帯 電していく.従って,地磁気内の運動とカップルして,試験質量はローレンツ力を受けるこ とになる.試験質量が持つ電荷量を q0 とするとき,ローレンツ力は,

$$F_{\rm Lor} = q_0 \cdot v_{\rm sc} \cdot B_{\rm geomag} \quad [N] \tag{13}$$

となる.従って,電荷量・運動速度・地磁気のいずれかが変動するとき,試験質量は外乱を 受けることになる.ただ,この力は運動方向と垂直な向きに働くため,干渉計の光軸と衛星 の運動方向が完全に一致している場合には,干渉計の雑音にはならない.また,2つの試験 質量で同じ変動をした場合にも,干渉計の雑音とはならない.衛星の進行方向と干渉計光軸 のずれや,2つの試験質量での同相雑音除去を $\epsilon_{\text{Lorentz}}$ という係数に含めて考えると,ロー レンツ力による相対加速度雑音の影響は,

$$\delta a_{\rm Lor} = \frac{\epsilon_{\rm Lor}}{m_{\rm p}} (\delta q_0 \cdot v_{\rm sc} \cdot B_{\rm geomag} + q_0 \cdot \delta v_{\rm sc} \cdot B_{\rm geomag} + q_0 \cdot v_{\rm sc} \cdot \delta B_{\rm geomag}) \quad [{\rm m/s^2/\sqrt{Hz}}]$$
(14)

となる.

年にアップデートされた.球面調和関数の13次まで定められている.

 $^{^{23}}$ 衛星自身による磁場変動の値として与えている 10^{-7} T/ $\sqrt{\text{Hz}}$ という値は , 25 cm の距離で $1 \text{ A}/\sqrt{\text{Hz}}$ の電 流変動が起きていることに相当する . 実際は , 電流が流れる配線はリターン電流線と対にして配線するため , 磁 場変動は大幅に低減できることが期待できる .

試験質量が持つ最大電荷量として $q_0 = 10^{-13}$ [C] とすると,式 (13) より,ローレンツ力 は $F_{\text{Lorentz}} = 3.5 \times 10^{-14}$ [N] となる.宇宙線の衝突頻度を $n_{\text{pr}} = 30$ [/s] とし,1回の衝突 あたり素電荷 e を受けるとすると,電荷変動は $\delta q_0 = 8.8 \times 10^{-19}$ [C/ $\sqrt{\text{Hz}}$] と小さな値になる.地磁気変動も十分小さく,式(14)の3つの項の中では,衛星運動速度変動が主になると考えられる.衛星運動速度変化を 1%程度,カップリング係数 $\epsilon_{\text{Lor}} = 0.02$ と見積るとすると,ローレンツ力変動による加速度雑音は $\delta a_{\text{Lor}} = 6.9 \times 10^{-18}$ [m/s²/ $\sqrt{\text{Hz}}$] と,十分小さな値になる.

A.1.3 その他の試験質量に直接作用する力

残留気体分子の衝突

試験質量周囲に残留気体分子があると,分子のランダムな衝突によって試験質量が外力を受ける.試験質量の鏡面(光軸に垂直な面)が気体分子から受ける力は, $F = a_{mir}P = fw$ と書くことができる.ここで,fは1つ分子から受ける力であり,wは単位時間当たりの衝突分子数である.衝突分子数がポアソン分布に従っているとすると,衝突分子数揺らぎは \sqrt{w} となる.従って,この微小平面が受ける揺動力は,

$$\delta F = f\sqrt{w} = \frac{a_{\min}P}{\sqrt{w}} \quad [N/\sqrt{Hz}] \tag{15}$$

の白色雑音となる.ここで,衝突分子数は,平均分子密度 \bar{n} と分子の平均速度 $v_{\rm rms}$ を用いて, $w = \bar{n}a_{\rm mir}v_{\rm rms}/6$ と書くことができる.理想気体の分子運動論より,気体の圧力は, $P = \bar{n}k_{\rm B}T$ と書くことができ,平均分子数密度は,

$$\bar{n} = P/k_{\rm B}T\tag{16}$$

となる.また,温度と分子の運動エネルギーの関係式より,平均速度は,

$$v_{\rm rms} = \sqrt{3k_{\rm B}T/m_{\rm m}} \tag{17}$$

となる.ここで, $m_{
m m}$ は分子質量である.以上より,試験質量が受ける変動力は,

$$\delta F = (2a_{\rm mir}P)^{1/2} \left(3k_{\rm B}Tm_{\rm m}\right)^{1/4} \tag{18}$$

となる.試験質量の反対面にも同じ大きさで無相関な変動力が加わるとすると,

$$\delta a_{\rm gas} = \frac{2(a_{\rm mir}P)^{1/2}}{m_{\rm p}} \left(3k_{\rm B}Tm_{\rm m}\right)^{1/4} \quad [{\rm m/s^2}/\sqrt{\rm Hz}]$$
(19)

の加速度雑音が試験質量に加わることになる.残留気体として窒素分子を仮定し,気圧を 10^{-6} Pa とすると,残留気体衝突による雑音レベルは, $\delta a_{\rm gas} = 8.6 \times 10^{-16} [{\rm m/s^2/\sqrt{Hz}}]$ になる.

宇宙放射線の衝突

静止質量 $m_{\rm pr}$,速度を vの粒子が、単位時間当たり $n_{\rm pr}$ 個衝突するするとき、その衝突数 揺らぎによって試験質量が受ける加速度は、

$$\delta f_{\rm CR} = \sqrt{n_{\rm pr}} m_{\rm pr} v \quad [N/\sqrt{\rm Hz}] \tag{20}$$

と書くことができる.ここで,衝突する宇宙線粒子のエネルギーを E_{d} とすると,その運動 速度は, $v = \sqrt{2E_{d}/m_{pr}}$ となる.従って,宇宙放射線の衝突による加速度は

$$a_{\rm CR} = \frac{\sqrt{2n_{\rm pr}m_{\rm pr}E_{\rm d}}}{m_{\rm p}} \quad [{\rm m/s^2}/\sqrt{{\rm Hz}}] \tag{21}$$

となる.ここで,衝突粒子として陽子を考え, $E_{\rm d}=3.2\times10^{-11}$ [J] (200 MeV),衝突頻度 $n_{\rm pr}=30\,{
m/s}$ とし,さらに2つの試験質量に独立な変動が加わるとすると, $a_{\rm CR}=1.8\times10^{-18}$ $[{\rm m/s^2}/\sqrt{{
m Hz}}]$ となる.

熱輻射

試験質量ハウジングの温度に変動があると、その熱輻射圧変動が試験質量に対する雑音となり得る.熱輻射圧変動 δW_{Trad} は、温度変動 δT_{d} を用いて、 $\delta W_{\text{Trad}} = 4\sigma T_{\text{p}}^{3} \delta T_{\text{d}} [W/m^{2}/\sqrt{\text{Hz}}]$ と書くことができる.試験質量の、光軸に垂直な、前後2つの面に対して、同じ輻射圧変動があっても、雑音にはならない.また、2つの試験質量が同様に動いた場合にも、雑音の影響はキャンセルされる.この変動除去の係数を ϵ_{Trad} とすると、試験質量が受ける相対加速度雑音は、

$$\delta a_{\rm Trad} = \frac{4\epsilon_{\rm Trad}\sigma T_{\rm p}^3 a_{\rm mir}}{m_{\rm p}c} \delta T_{\rm d} \quad [{\rm m/s^2}/\sqrt{\rm Hz}]$$
(22)

となる.温度変動量として 0.1 Hz で $\delta T_{\rm d} = 10^{-3} [{\rm K}/\sqrt{{\rm Hz}}]^{24}$,同相雑音除去係数を $\epsilon_{\rm Trad} = 10^{-3}$ とすると,試験質量の相対変動雑音は, $\delta a_{\rm Trad} = 1.5 \times 10^{-16} [{\rm m/s^2}/\sqrt{{\rm Hz}}]$ となる.

A.2 衛星に作用する外乱

衛星-試験マスのカップリング

DPF では,試験質量は衛星内で非接触保持されているため,衛星の変動が直接に重力波 検出器の雑音になることは無い.ただ,重力や磁力などを介して観測周波数帯での試験質量 の外乱として現れることが無いよう,十分な配慮は必要である.この影響は,衛星変動の1 次の効果まで考慮すると,

$$\delta a = K \cdot \delta x_{\rm sc} \tag{23}$$

と書くことができる.ここで, K は, 衛星変動と干渉計変動のカップリング係数であり,例 えば衛星重力場の影響では,式(7)より, $K_{gg} \sim 9.9 \times 10^{-9} [1/s^2]$ となる.衛星重量分布や 電磁場分布が干渉計に対して対象に配置されている理想的な場合には,この1次のカップリ ング係数は0にすることができ,2次以上の高次の効果が支配的になる.LISA グループ内 の評価 [21] では,重力以外で大きなカップリングの原因となるのは,試験質量用の静電型ト ランスデューサ/アクチュエータの効果であり,

$$K_{\rm s} \sim 5 \times 10^{-9} \ [1/{\rm s}^2]$$
 (24)

であると見積もられている.一方,実際の実験では,

$$K_{\rm s,\,ex} \sim 4 \times 10^{-7} \ [1/{\rm s}^2]$$
 (25)

²⁴周波数依存性としては,太陽輻射圧変動のスペクトルと同様に周波数の1/3乗で減少していくものとする.

程度あるという測定結果が報告されている.見積もりよりも大きなカップリング係数になっているのは,極板磁場の非一様性,もしくは,変動の2次の効果のためと考えられている.

本ドキュメントでは,それらの上限値として, $K_{
m UL} \sim 10^{-6} [/s^2]$ という値を用いて評価を行う.

衛星のドラッグフリー制御

衛星と試験質量との相対変動は、ローカルセンサによって検出され、衛星に取り付けられたスラスタにフィードバックされる、衛星が受ける太陽輻射圧や大気摩擦等に起因する低周波数帯のドリフト、また太陽輻射圧変動や衛星スラスタなどの観測周波数帯での衛星変動は、この制御系の制御ゲインによって抑えられることになる、制御によって抑えきれない衛星の変動 ($\delta X_{\rm sc}$)は、重力などを介して、試験質量の位置に対する雑音となる、衛星やスラスタの応答速度を考慮すると、このドラッグフリー制御の帯域は、10 Hz 程度が妥当と考えられ、0.1 Hz での制御ゲインは $G_{\rm DF} = 40$ 程度になる見込みである、

ドラッグフリー制御による衛星変動の抑圧まで考慮すると,干渉計加速度雑音は,衛星に 加わる力の雑音と

$$\delta a = \frac{K}{G_{\rm DF} M_{\rm sc} \omega^2} \delta F_{\rm sc} = \frac{6.33 \times 10^{-12}}{f^2} \delta F_{\rm sc} \quad [{\rm m/s^2}/\sqrt{\rm Hz}]$$
(26)

という関係で結ばれることになる.

太陽の輻射圧

衛星が受ける外乱として,太陽からの輻射圧を考える.太陽の輻射圧の大きさが, $W_0 = 1360 \text{ W/m}^2$ [21],衛星の表面積が $A_{sc} = 1 \text{ m}^2$ のとき,太陽輻射圧によって衛星が受ける力は,

$$F_{\rm sun} = \frac{W_0 A_{\rm sc}}{c} \sim 10 \ \mu \text{N} \tag{27}$$

となる.また,輻射圧変動による雑音力は,

$$\delta F_{\rm sun} = \frac{\delta W_0 A_{\rm sc}}{c} \sim 2.5 \times 10^{-9} \text{ N}/\sqrt{\text{Hz}} \quad (\text{at } 0.1 \text{ Hz})$$

$$\tag{28}$$

となる.衛星の質量を $M_{
m sc} = 100$ [kg] とすると、この力の変動による加速度雑音は、

$$\delta A_{\rm sun} \sim 2.5 \times 10^{-11} \,\,{\rm m/s^2/\sqrt{Hz}} \quad ({\rm at} \,\, 0.1 \,{\rm Hz})$$
(29)

になる.式 (26)より,太陽輻射圧による影響は,干渉計の加速度雑音では,0.1 Hz で $\delta a_{sun_rad} = 1.6 \times 10^{-18} \text{ [m/s^2/\sqrt{Hz}]}$ となる.

地球大気の摩擦力

地球大気の抵抗によって衛星が受ける摩擦力は,

$$D_{\rm atom} = \frac{1}{2} \rho c_{\rm d} A_{\rm sc} v_{\rm sc}^2 \tag{30}$$

で表される.ここで, *c*_dは,衛星の大気抵抗係数で,衛星ミッションでは 2.2 という値が用いられている.地球大気圧は,太陽活動や緯度・経度によっても異なるが,高度 750 km では, 10⁻⁸ – 10⁻⁹ Pa 程度と見込まれている.ここでは, 10⁻⁸ Pa として見積もると,大気密

度は $\rho\sim 1.2\times 10^{-13}\,\rm kg/m^2$ となる.これらの値より、地球大気による摩擦力は、 $D_{\rm atom}=7.4\times 10^{-6}\,\rm [N]$ と見積もることができる 25 .

衛星自身の雑音

衛星にはさまざまな機器が搭載されており,それらの振動が衛星自身の変動として現れる. 振動源としては,衛星のドラッグフリー制御を実現するために搭載されるスラスタ,モーメ ンタム・ホイールや,その他の電気機器が考えられる.これらの振動が直接に干渉計やレー ザー光源・安定化システムに伝わらないよう,十分な配慮が必要である.

ドラッグフリーに使用するスラスタに対しては、0.1 Hz での推力雑音 $\delta F_{\text{thruster}} \leq 10^{-7} \text{ N}/\sqrt{\text{Hz}}$ を要求値としている.この値は、ドラッグフリー制御によって抑圧された結果、衛星の振動を太陽の輻射圧雑音よりも安定なレベルに抑える、という要請から定められている.姿勢制御用のモーメンタム・ホイールは、その回転周波数付近で大きな振動を発生させることが予想される.従って、回転周波数が十分高い場合には適切な防振を施すことによって、振動の影響を問題ないレベルにまで抑えることが期待できる.ただ、ON/OFF 制御や、複数のホイールのビートによっては、その変動が低周波にダウンコンバートされる可能性があるため、十分に配慮した設計をする必要がある.

A.3 干渉計の雑音

光の量子雑音

試験質量間の距離変動を観測する干渉計では,レーザー光が光子の集まりであることに起 因する量子雑音が原理的な感度限界を決める.この量子雑音は,散射雑音と輻射圧雑音の2 つに分けて考えることができる.ただ,この2つの雑音は,不確定性関係で結ばれ,一方を 低減すれば他方が悪化するという関係にある.

散射雑音は,干渉計からの反射光を光検出器で検出する際の光子数揺らぎに起因する.光 子数揺らぎは,レーザー光量の平方根に比例するのに対して,信号は,レーザー光量に比例 して増加するため,雑音レベルはレーザー光量の平方根に反比例することになる.この変位 雑音レベルは,

$$\delta x_{\rm shot} = \frac{1}{8\mathcal{F}} \sqrt{\frac{ch\lambda}{\eta P_{\rm L}}} \left[1 + \left(\frac{f}{f_{\rm cut}}\right)^2 \right] \quad [{\rm m}/\sqrt{{\rm Hz}}]$$
(31)

となる.ここで, η は,光検出器で光を光電流に変換する際の量子効率である.干渉計入射 光量 25 mW^{26} ,量子効率 $\eta = 0.9 \text{ A/W}$,という値を用いると,変位雑音レベルは, $\delta x_{\text{shot}} = 2.7 \times 10^{-18} \text{ [m/}\sqrt{\text{Hz}}$]となる.DPFでは,干渉計基線長が短く,フィネスもさほど高くないので,共振器のカットオフ周波数は,7.5 MHz と十分高くなる.従って,観測周波数帯では,散射雑音は平坦なスペクトルを持つと考えてよい.

一方,レーザー光の輻射圧雑音は,干渉計の鏡で光を打ち返す際の,光子数揺らぎに起因 する雑音である.雑音レベルはレーザー光量の平方根に比例することになる.その輻射圧力

²⁵軌道上の大気圧差の影響による摩擦力揺らぎに関しても見積もる必要がある.

²⁶レーザー光源の出力は 100 mW であるが,周波数安定化や強度安定化に使用される光や,伝送経路などでの損失を考慮して,干渉計には 25 mW が入射されるものとして見積もっている.

揺らぎは,

$$\delta F_{\rm rad} = \frac{8\mathcal{F}}{\pi} \sqrt{\frac{hP_{\rm L}}{c\lambda \left[1 + \left(\frac{f}{f_{\rm cut}}\right)^2\right]}} \quad [{\rm N}/\sqrt{{\rm Hz}}]$$
(32)

となる.この式に数値を代入すると,加速度雑音としては, $\delta a_{\rm rad} = 8.2 \times 10^{-17} \, [{\rm m/s^2/\sqrt{Hz}}]$, 変位雑音としては, $\delta x_{\rm rad} = 2.0 \times 10^{-18} / f^2 \, [{\rm m}/\sqrt{{\rm Hz}}]$ となる.

熱雑音

干渉計を構成する試験質量は,有限の温度を持っているため,その熱振動が雑音になり得る.この熱雑音は,試験質量の形状や材質(ヤング率,ポアソン比,機械損失など),などに依存し,

$$\delta x_{\text{ther}} = \sqrt{\frac{8k_{\text{B}}T_{\text{m}}(1-\sigma^2)}{2\pi^{3/2}QE_0w_0f}}$$
(33)

と書くことができる.試験質量の材質が, 10^6 のQ値を持つ溶融石英であるとき, $\delta x_{\text{ther}} = 6.3 \times 10^{-18}/\sqrt{f} \text{ [m/\sqrt{\text{Hz}}]}$ となる²⁷.

レーザー周波数雑音

DPFの重力波検出器として用いられるファブリー・ペロー干渉計は,レーザー光の波長を基準に共振器の基線長変動を計測する装置である.従って,レーザー光源の波長(周波数)が変動すると,試験質量の変動と区別することができない.干渉計に入射されるレーザー光の周波数雑音 $\delta\nu$ は,

$$\delta x_{\rm freq} = \frac{\delta \nu}{\nu} L \quad [m/\sqrt{\rm Hz}] \tag{34}$$

という形で干渉計変位雑音となる.DPF では,光源から出たレーザー光を外部共振器に入射し,その信号をフィードバックすることで周波数安定化を行う.これまでの地上での安定化実験で実現されている安定度や,理論的な見積もりを踏まえて,DPF では, $\delta \nu = 1 \left[\text{Hz}/\sqrt{\text{Hz}} \right]$ の周波数安定度を目標としている.これより,入射レーザー光の周波数雑音の影響は, $\delta x_{\text{freg}} = 1.8 \times 10^{-16} \left[\text{m}/\sqrt{\text{Hz}} \right]$ となる.

B パラメータ一覧

計算に用いたパラメータ類を表 8,9 にまとめる.

C ミッション準備状況

2001 年に DECIGO が提唱された後,期待できる科学的成果とその実現性を検討するミー ティング, DECIGO パスファインダーの概念設計に関する会合が以下のように開かれている.

■ スペース重力波アンテナ WG 第1回ミーティング

(2002 年 5 月 9 日, 国立天文台・解析研究棟大セミナー室)

 $^{^{27}}$ 地上重力波検出器と同様に,溶融石英に誘電体多層膜ミラーコーティングした場合には,このコーティングの熱雑音の方が大きくなり, $\delta x_{\rm ther}=3.6\times10^{-17}/\sqrt{f}~[{\rm m}/\sqrt{\rm Hz}]$ 程度になる.この値は,干渉計のビーム径などにも依存するため,配慮した設計が必要である.

項目	值	単位
真空中の光速	$c = 2.99792458 \times 10^8$	m/s
重力定数	$G = 6.6742 \times 10^{-11}$	$\rm Nm^2/kg^2$
真空の誘電率	$\epsilon_0 = 8.8542 \times 10^{-12}$	F/m
真空の透磁率	$\mu_0 = 1.2566 \times 10^{-6}$	N/A^2
プランク定数	$h = 6.6261 \times 10^{-34}$	Jѕ
素電荷	$e = 1.6022 \times 10^{-19}$	С
ボルツマン定数	$k_{\rm B} = 1.3807 \times 10^{-23}$	J/K
ステファン-ボルツマン定数	$\sigma = 5.6704 \times 10^{-8}$	$W/m^2/K^4$
陽子質量	$m_{\rm pr} = 1.7 \times 10^{-27}$	kg
天文単位	$1 \text{ AU} = 1.5 \times 10^{11}$	m
太陽質量	$M_{\odot} = 1.989 \times 10^{30}$	kg
地球の質量	$M_{\rm earth} = 5.974 \times 10^{24}$	kg
地球半径	$r_{\mathrm{earth}} = 6371.2 \times 10^3$	km

表 8: 物理定数・天文情報など

- スペース重力波アンテナ WG 第2回ミーティング
 (2003 年 5 月 12 日,国立天文台・解析研究棟大セミナー室)
- スペース重力波アンテナ (DECIGO) WG 第3回ミーティング (2005 年 5 月 12 日,国立天文台・解析研究棟大セミナー室)
- 宇宙重力波干渉計検討会 小型衛星と DECIGO (2006 年 2月 24 日,国立天文台・解析研究棟大セミナー室)
- スペース重力波アンテナ (DECIGO) WG 第4回ミーティング
 (2006 年 5 月 11 日,国立天文台・解析研究棟大セミナー室)
- DECIGO-PF1 検討会

(2006 年 8 月 4 日, 東京大学 理学部 1 号館 338 号室, 国際電話会議)

その他,各サブシステムの設計や仕様に関するサブグループ会合が随時開かれている.

	N 01 DI I		
	項目	値	単位
試験質量			
叫杨文灵王	所旦	1	1
	貝里	$m_{\rm p} \equiv 1$	Kg
	密度	$\rho_{\rm p} = 2.2 \times 10^3$	kg/m²
	磁化率	$\chi_{\rm m} = 1.37 \times 10^{-5}$	
	是大雪荷量	$a_0 = 10^{-13}$	С
	取八电19里	$q_0 = 10$	U
	現且佺	0.1	m
	厚さ	0.06	m
	结而積	$a = -7.85 \times 10^{-3}$	m^2
	奶山很	$u_{\rm mir} = 1.00 \times 10$	111
	温度	$T_{\rm p} = 293$	K
	Q 値	10^{6}	
	ヤング率	$E_0 = 7.2 \times 10^{10}$	Pa
	ポマソンド	$\sigma = 0.17$	10
	ホテランに	$\delta = 0.17$	
干渉計			
	干涉計基線長	L = 10	cm
		D = 25	mW
		$\Gamma_{\rm L} = 23$	111 VV
	レーザー波長	$\lambda = 532$	nm
	周波数	$\nu = 5.63 \times 10^{14}$	Hz
	工法計フィネフ	100	
		100	
	レーサーヒーム径	$w_0 = 10^{-3}$	m
	光検出器量子効率	$\eta = 0.9$	A/W
衛足		-	
141 王	所旦	M 100	1
	貝里	$M_{\rm sc} \equiv 100$	кg
	表面積	$A_{\rm sc} = 1$	m^2
	直径	$r_{co} = 0.7$	m
	旧由	T = 202	V.
	<u> 冲</u> 皮	$I_{\rm sc} = 295$	<u>Γ</u>
	温度変化	$\delta T_{\rm sc}/T_{\rm sc} = \delta W_0/4W_0$	$Hz^{-1/2}$
	埶膨張率	2.5×10^{-5} (Alminium)	K^{-1}
)	
	時月八大の北北な地		,
	買重分布の非対称性	$\Delta M_{\rm s} \sim 2$	kg
	非対称質量までの距離	$r_{gg} = 0.3$	m
衛足動道・環谙		66	
	赴 ,送口中	1 750 103	
		$h_{\rm orb} = 750 \times 10^{\circ}$	m
	軌道周期	99.7	\min
	地球との相対速度	$v_{sc} = 7.4819 \times 10^3$	m/s
	市田市小	Sec. 0.01 x er	$m/a/\sqrt{IIa}$
	还反交化	$\delta v_{sc} \sim 0.01 \times v_{sc}$	m/s/√nz
	地球に対する角速度	$\theta_{\rm sc} = 6.0189 \times 10^{-2}$	deg/s
	大唱声时亡	$W_{2} = 1260$	W/m^2
		WU - 1300	vv / III
	太陽輻射圧変化量	$\delta W_0 = 0.2 \times (1 \text{ Hz}/f)^{1/3}$	$W/(m^2Hz^{1/2})$
	大気圧	$\sim 10^{-8}$	Pa
		10×10^{-13}	 1
	入风雪反	$p = 1.2 \times 10^{-1}$	кg/ш
	大気摩擦係数	$c_{\rm d} = 2.2$	
	衛星内真空度	$< 10^{-6}$	Pa
		$\bar{n} = 2.5 \times 10^{14}$	$/m^{3}$
	王系力于奴讧反	$n = 2.0 \times 10$	/ 111
	至素分子質量	$m_{\rm N_2} = 4.65 \times 10^{-20}$	kg
	宇宙線衝突頻度	$n_{\rm Dr} = 30$	counts/s
	エネルギー	$E_1 = 3.2 \times 10^{-11}$	T

表 9: DPF パラメータ

レファレンス

参考文献

- N. Seto, S. Kawamura, T. Nakamura T, "Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space", Phys. Rev. Lett. 87 (2001) 221103.
- [2] 中村卓史, 三尾典克, 大橋正健 編"重力波をとらえる"(京都大学学術出版会, 1998); 坪
 野公夫 "時空のさざ波"(丸善, 1986).
- [3] K. S. Thorne, "Gravitational radiation", in Three hundred years of gravitation, edited by S. Hawking and W. Israel (Cambridge University Press, 1987), p. 330-458.
- [4] R. A. Hulse and J. H. Taylor, "Discovery of a pulsar in a binary system", Astrophys. J. 195 (1975) L51; R. A. Hulse, "The discovery of the binary pulsar", Rev. Mod. Phys. 66 (1994) 699; J. H. Taylor, "Binary pulsars and relativistic gravity", Rev. Mod. Phys. 66 (1994) 711.
- [5] J. Weber, "Detection and Generation of Gravitational Waves", Phys. Rev. 117 (1960) 306; J. Weber, "Evidence for Discovery of Gravitational Radiation", Phys. Rev. Lett. 22 (1969) 1320.
- [6] G. E. Moss, L. R. Miller, and R. L. Forward, "Photon-Noise-Limited Laser Transducer for Gravitational Antenna", Appl. Opt. 10 (1971) 2495.
- [7] A. Abramovici, et al., "LIGO The Laser-Interferometer-Gravitational-Wave-Observatory", Science 256 (1992) 325.
- [8] The VIRGO collaboration, "VIRGO Final Design Report", VIR-TRE-1000-13, (1997).
- K. Danzmann, et al., "Proposal for a 600m Laser-Interferometric Gravitational Wave Antenna", Max-Planck-Institut f
 ür Quantenoptik Report 190, (1994).
- [10] K. Tsubono, in Gravitational Wave Experiments, edited by E. Coccia, G. Pizzella, and F. Ronga, (World Scientific, 1995), p. 112-114; K. Kuroda et al., in Gravitational Waves: Sources and Detectors, Edited by I. Ciufolini and F. Fidecaro, (World Scientific, 1997), p. 100-107; M. Ando, K. Arai, R. Takahashi, et al., "Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy", Physical Review Letters 86 (2001) 3950.
- [11] C. Kim, V. Kalogera, DR. Lorimer, "The probability distribution of binary pulsar coalescence rates. I. Double neutron star systems in the Galactic field", Astrophysical Journal 584 (2003) 985; AJ. Faulkner, M. Kramer, AG. Lyne, et al., "PSR J1756-2251: A new relativistic double neutron star system, Astrophysical Journal 618 (2005) L119.
- [12] "LIGO II Conceptual Project Book", LIGO M990288-A-M (1999).

- [13] K. Kuroda, M. Ohashi, S. Miyoki, et al., "Large-scale cryogenic gravitational wave telescope", International Journal of Modern Physics D 8 (1999) 557; K. Kuroda, The status of LCGT, Class. Quantum Grav. 23 (2006) S215.
- [14] "LISA Laser Interferometer Space Antenna: A cornerstone Mission for the Observation of Gravitational Waves", System and Technology Study Report, ESA-SCI (2000) 11.
- [15] S. Kawamura, T. Nakamura, M. Ando et al., "The Japanese space gravitational wave antenna - DECIGO", Class. Quantum Grav. 23 (2006) S125.
- [16] LISA Pathfinder Web Page, http://sci.esa.int/science-e/www/area/index.cfm?fareaid=40
- [17] GRACE mission Web Page, http://www.csr.utexas.edu/grace
- [18] GOCE mission Web Page, http://www.esa.int/esaLP/LPgoce.html
- [19] Gravity Probe B Web Page, http://www.gravityprobeb.com/
- [20] Wilkinson Microwave Anistropy Probe Web Page, http://map.gsfc.nasa.gov/
- [21] B. L. Schumaker, Class. Quantum Grav. 20 (2003) S239.
- [22] 平成 18 年度版 理科年表, 国立天文台編.
- [23] International Center for Global Gravity Field Models, http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html
- [24] 国土地理院 地磁気観測量, http://vldb.gsi.go.jp/sokuchi/geomag/index.html