Plan of Lectures

Lecture (I) Ground-based detector : LCGT

Lecture (II) Space-borne detector : DECIGO

Lecture (III) Novel type detector : TOBA

Space-borne detector : DECIGO

Original Picture : Sora

Masaki Ando (Department of Physics, Kyoto University)

> On behalf of DECIGO working group

Earth Image: ESA

Introduction DECIGO DECIGO Pathfinder SWIM Summary

Introduction

Expanding the Horizon

First-gen. GW detectors : ~ 20Mpc obs. range

However... we can expect only rare events $(10^{-4}-10^{-2} \text{ event/yr})$

ightarrow Next generation detectors

Expanding the observation band

GW frequency ~ 1/ (time scale of the source)

Observation at low frequency

- Larger-mass events \rightarrow larger amplitude GW
- (Almost) stationary source \rightarrow Do not have to wait for 'events'
 - Different or complementary science

(Example) GW from compact binary inspiral

- Large separation
 - \rightarrow stationary, low-freq. GWs
- Just before merger ($R_{\rm ISCO} \propto M$)
 - \rightarrow Large mass, large amplitude GWs at low freq.

Sources and detectors

Ground-based detectors : $10Hz - 1kHz \rightarrow$ Neutron star, Supernova, ...DECIGO/BBO: $0.1 - 1Hz \rightarrow$ IMBH, Background GWs, ...LISA: $1mHz - 0.1Hz \rightarrow$ SMBH, Compact binary,...

Space GW detector

Advantages of a space detector for low-freq. observation

- Free from noises by the earth Seismic noise, gravity-gradient noise
- Longer baseline

Observation freq. band

 \propto 1 / (Beam storage time) \propto Baseline length

Suppression of displacement noise Strain sensitivity ~ (disp. noise) / (Baseline length)

Disadvantages of a space detector

- Cost, Development time
- Maintenance and upgrade are almost impossible after launch

Space-borne observatories

LISA (Laser Interferometer Space Antenna) Obs. band around 1mHz ~Million km baseline length Recent change : ESA/NASA → ESA mission Design updates underway

 \rightarrow changing name to

NGO (New Gravitational-wave Observatory)

DECIGO

(Deci-hertz Interferometer Gravitational Wave Observatory) Obs. Band around 0.1Hz 1000km baseline length

NGO (LISA) Interferometry

Proof masses

Interferometer design

- Optical transponder configuration Long baseline (\sim 1 million km) \rightarrow power loss by diffraction Each S/C has laser source \rightarrow Phase-lock to incoming beam

LISA assessment study report (Yellow Book), ESA/SRE (2011) 3, February 20

LISA Pathfinder

LISA Pathfinder

Technical test for LISA
 Obtain the best geodesic motion possible
 Differential acceleration of the two TMs
 3 x 10⁻¹⁴ m s⁻² at 1 mHz
 Determine best configuration by experiments
 Develop a noise model of the system
 Allows the projection of the performance of technologies to LISA

- Status

Most of the hardware is there. Awaiting thrusters and launch lock. Most of the experiments are already defined. - Launch in 2014

M Hewitson for the LPF team, AMALDI, July 15th 2011

GW observation roadmap

DECIGO

DECIGO

DECIGO (<u>Deci</u>-hertz interferometer <u>Gravitational wave Observatory</u>)

Space GW antenna (~2027) Obs. band around 0.1 Hz 'Bridge' the obs.gap between LISA and Terrestrial detectors

Pre-Conceptual Design

Interferometer Unit: Differential FP interferometer

Arm length:1000 kmFinesse:10Mirror diameter:1 mMirror mass:100 kgLaser power:10 WLaser wavelength:532 nm

S/C: drag free 3 interferometers

Targets and Science

IMBH binary inspiral NS binary inspiral Stochastic background Galaxy formation (Massive BH) Cosmology (Inflation, Dark energy) Fundamental physics

Astronomy and Cosmology

Verification of the alternative theories of gravity
 Test Brans-Dicke theory by NS/BH binary evolution
 → Stronger constraint by 10⁴ times

K. Yagi and T. Tanaka, Prog. Theor. Phys. 123, 1069 (2010)

Black hole dark matter

Gravitational collapse of the primordial density fluctuations → Primordial black holes (PBHs) as a candidate of dark matter R. Saito and J. Yokoyama, Phys. Rev. Lett. 102 161101 (2009)

Neutron-star physics

Determine masses of 10⁵ NSs per year

 \rightarrow Constrain the EoS of NS

Formation process of NS from the spectrum

Characterization of inflation

DECIGO Interferometer

Interferometer Unit: Differential FP interferometer

Baseline length: 1000 km 3 S/C formation flight 3 FP interferometers Drag-free control

APCTP2011 (August 2, 2011, Pohang, Korea)

Lase

Photodetecto i'm Cauity

Mirro

1000km

Drag-free S/C

Arm cavity

Interferometer Design

Transponder type vs Direct-reflection type

Compare : Sensitivity curves and Expected Sciences

Decisive factor: Binary confusion noise

Arm length

Cavity arm length : Limited by diffraction loss

Effective reflectivity (TEM₀₀ → TEM₀₀) Laser wavelength : 532nm Mirror diameter: 1m Optimal beam size

1000 km is almost max.

APCTP2011 (August 2, 2011, Pohang, Korea)

Cavity and S/C control

Cavity length change

PDH error signal → Mirror position (and Laser frequency) **Relative motion between mirror and S/C**

Local sensor \rightarrow S/C thruster

Displacement Signal between S/C and Mirror

Requirements

Sensor Noise

Shot noise $3 \times 10^{-18} \text{ m/Hz}^{1/2}$ (0.1 Hz) \swarrow **x 10 of LCGT in phase noise**

Other noises should be well below the shot noise Laser freq. noise: 1 Hz/Hz^{1/2} (1Hz) Stab. Gain 10⁵, CMRR 10⁵

Acceleration Noise Force noise $4x10^{-17} \text{ N/Hz}^{1/2}$ (0.1 Hz) \swarrow x 1/50 of LISA

External force sources Fluctuation of magnetic field, electric field, gravitational field, temperature, pressure, etc.

Orbit and Constellation

Candidate of orbit:

Record-disk orbit around the Sun Relative acc. $4x10^{-12} \text{ m/s}^2$ (Mirror force ~10⁻⁹ N)

Constellation

- 4 interferometer units
 - 2 overlapped units → Cross correlation
 2 separated units → Angular resolution

Foreground Cleaning

DECIGO obs. band: free from WD binary foreground → Open for cosmological observation

DECIGO will watch $\sim 10^5$ NS binaries \downarrow Foreground for GWB

In principle, possible to remove them.

Require accurate waveform $\rightarrow \Delta m/m < \sim 10^{-7} \%$

Fig: N. Kanda

Design Update

By T.Akutsu

Considering "Conceptual design"

- •Arm length: 1,500 km
- Laser power: 30 W
- Laser wavelength: 532 nm
- •Mirror diameter: 1.5 m
- Mirror mass: 100 kg
- Mirror reflectivity: 77.3%
- Cavity g-param: 0.1

This is the first step to considering the conceptual design.

Next:

 ➡Confirm the calculations.
 ➡Find the realistic way to realize this!

14 GWADW2011 in Isola d'Elba (24 May 2011)

DECIGO Pathfinder

Roadmap

DECIGO-PF

DECIGO Pathfinder (DPF)
First milestone mission for DECIGO
Shrink arm cavity
DECIGO 1000km → DPF 30cm

Single satellite (Payload ~1m³, 350kg) Low-earth orbit (Altitude 500km, sun synchronous)

30cm FP cavity with 2 test masses Stabilized laser source Drag-free control

DPF satellite

DPF Payload

Size : 950mm cube Weight : 150kg Power : 130W Data Rate: 800kbps Mission thruster x12

Power Supply SpW Comm.

Satellite Bus

('Standard bus' system) Size : 950x950x1100mm Weight : 200kg SAP : 960W Battery: 50AH Downlink : 2Mpbs DR: 1GByte 3N Thrusters x 4

DPF mission payload

Mission weight : ~150kg Mission space : ~95 x 95 x 90 cm

Drag-free control Local sensor signal → Feedback to thrusters

Laser source Yb:YAG laser (1030nm) Power : 25mW Freq. stab. by Iodine abs. line Fabry-Perot interferometer Finesse : 100 Length : 30cm Test mass : ~a few kg Signal extraction by PDH

DPF Sensitivity

Laser source : 1030nm, 25mW IFO length : 30cm Finesse : 100, Mirror mass : 1kg Q-factor : 10⁵, Substrate: TBD Temperature : 293K

Satellite mass : 350kg, Area: 2m² Altitude: 500km Thruster noise: 0.1µN/Hz^{1/2}

(Preliminary parameters)

APCTP2011 (August 2, 2011, Pohang, Korea)

Targets of DPF

Scientific observations Gravitational Waves form BH mergers -> BH formation mechanism Gravity of the Earth -> Geophysics, Earth environment Science technology

 Space demonstration for DECIGO
 Most tech. with single satellite (IFO, Laser, Drag-free)
 Precision measurement in orbit
 FO measurement under stable zero-gravity

Earth Image: ESA

DPF Science

 Astronomical observation
 GW from merger of IMBHs
 → Formation mechanism of supermassive BHs

~30 GCs within DPF range

Observation of the earth Gravitational potential -> Shape of the earth Environment monitor Comparable sensitivity with other missions

GW target of DPF

Black hole events in our galaxy IMBH inspiral and merger Obs. Distance 40kpc, for $m = 2 \times 10^4 M_{sun}$ Obs. Duration (~1000sec) Observable range covers our Galaxy (SNR~5)

There may be IMBH at GCs DPF covers ~30 GCs

Hard to access by others → Original observation

Earth's Gravity Observation

Measure gravity field of the Earth from Satellite Orbits, and gravity-gradiometer comprehensive and homogeneous-quality data

Seasonal change of the gravitational potential observed by GRACE

 Determine global gravity field
 → Basis of the shape of the Earth (Geoid)
 Monitor of change in time
 → Result of Earth's dynamics
 Ground water motion
 Strains in crusts by earthquakes and volcanoes

Satellite Gravity missions

3-types of satellite gravity missions

Satellite-to Satellite tracking High-Low

 Observe satellite orbit by global positioning system (GPS,...)
 Cancel drag-effects by accelerometer

Satellite-to Satellite tracking Low-Low

Distance meas. by along-track satellites
Cancel drag-effects by accelerometer

GRACE (NASA, 2002-)

Satellite Gravity Gradiometry

Observe potential by gravity gradiometer
Drag-free control for cancellation of drags

GOCE (ESA, 2009-)

DPF sensitivity

Comparison of sensitivities

Better in low orders (large scale) \leftarrow Sensors Worse in high orders (small scale) \leftarrow Altitude

DPF-WG activities

Mission design

- Structure and thermal modeling
- Drag-free control design

BBMs (Bread-board model) for Core components

Interferometer module

Univ. of Tokyo NAOJ

Test-mass module

NAOJ Hosei Univ.

Laser stabilization module

UEC, NICT NASA/GSFC

Low-noise thruster module

DPF mission status

DPF : One of the candidate of JAXA's small satellite series

At least 3 satellite in 5 years with Standard Bus + M-V follow-on rocket

1st mission (2012): SPRINT-A/EXCEED
2nd mission (~2014/15) : SPRINT-B/ERG
DPF survived until final two
3rd mission (~2016/17) : TBD
Call for proposal : 2012

DPF is one of the strongest candidates of the 3rd mission

SPRINT-A /EXCEED UV telescope mission

Next-generation Solid rocket booster (M-V FO) Fig. by JAXA

SWIM

Roadmap

SWIM launch and operation

Tiny GW detector module Launched in Jan. 23, 2009 \Box In-orbit operation

TAM: Torsion Antenna Module with free-falling test mass (Size : 80mm cube, Weight : ~500g)

Test mass

~47g Aluminum, Surface polished Small magnets for position control

Photo sensor

Reflective-type optical displacement sensor Separation to mass ~1mm Sensitivity $\sim 10^{-9} \text{ m/Hz}^{1/2}$ 6 PSs to monitor mass motion

SWIM observation

Observation by SWIM

Jun 17, 2010 ~120 min. operation July 15, 2010 ~240 min. operation Ground-based detectors were operated at the same period.

Sensitivity

Observation by SWIM and ground-based detectors 1st run June 17 2010, 2nd run July15 2010

SWIM observation

SWIM observation (July 15, 2010 ~240 min.)

Summary

Summary

DECIGO: Fruitful Sciences

Very beginning of the Universe Dark energy Galaxy formation

DECIGO Pathfinder

Important milestone for DECIGO Observation of GWs and Earth's gravity Strong candidate of JAXA's satellite series SWIM – Operation in orbit first precursor to space!

Collaboration and support

•Supports from LISA

Technical advices from LISA/LPF experiences Support Letter for DECIGO/DPF, Joint workshop (2008.11)

Collab. with Stanford univ. group

Drag-free control of DECIGO/DPF UV LED Charge Management System for DPF

Collab. with NASA/GSFC

Fiber Laser, Earth's gravity observation

- Collab. with JAXA navigation-control section

 → Formation flight of DECIGO, DPF drag-free control

 Geophysics group (Kyoto, ERI, UEC, NAOJ)
- Advanced technology center (ATC) of NAOJ
- JAXA's fund for small satellite development
- •Research Center for the Early Universe (RESCEU), Univ. of Tokyo

References

•LISA

- LISA web page : http://sci.esa.int/lisa
- Special Issue, Class. Quantum Grav. 28 (2011) 090301 094021.

•DECIGO and DECIGO Pathfinder

- DECIGO web page : http://gwcenter.icrr.u-tokyo.ac.jp/en/
- N.Seto, et al., Phys. Rev. Lett., 87 (2001) 221103.
- S.Kawamura, et al., Class. Quantum Grav., 23 (2006) S125.
- M.Ando, et al., Class. Quantum Grav. 27 (2010) 084010.