背景: ESA Planck pageより

研究室輪講

BICEP2/Keck Array と Planck のデータを用いたCMB偏光解析

安東 正樹 (東京大学 理学系研究科)

論文紹介

A Joint Analysis of BICEP2/Keck Array and Planck Data BICEP2/Keck and Planck Collaborations: P. A. R. Ade,¹ N. Aghanim,² Z. Ahmed,³ R. W. Aikin,⁴

arXiv:1502.00612 (2 Feb 2015)

K. D. Alexander,⁵ M. Arnaud,⁶ J. Aumont,² C. Baccigalupi,⁷ A. J. Banday,^{8,9} D. Barkats,¹⁰ R. B. Barreiro,¹¹ J. G. Bartlett,^{12,13} N. Bartolo,^{14,15} E. Battaner,^{16,17} K. Benabed,^{18,19} A. Benoit-Lévy,^{20,18,19} S. J. Benton,²¹ J.-P. Bernard,^{8,9} M. Bersanelli,^{22,23} P. Bielewicz,^{8,9,7} C. A. Bischoff,⁵ J. J. Bock,^{13,4} A. Bonaldi,²⁴ L. Bonavera,¹¹ J. R. Bond,²⁵ J. Borrill,^{26,27} F. R. Bouchet,^{18,19} F. Boulanger,² J. A. Brevik,⁴ M. Bucher,¹² I. Buder,⁵ E. Bullock,²⁸ C. Burigana.^{29, 30, 31} R. C. Butler,²⁹ V. Buza,⁵ E. Calabrese,³² J.-F. Cardoso,^{33, 12, 18} A. Catalano,^{34, 35} A. Challinor, ^{36,37,38} R.-R. Chary,³⁹ H. C. Chiang,^{40,41} P. R. Christensen,^{42,43} L. P. L. Colombo,^{44,13} C. Combet,³⁴ J. Connors.⁵ F. Couchot,⁴⁵ A. Coulais,³⁵ B. P. Crill,^{13,4} A. Curto,^{46,11} F. Cuttaia,²⁹ L. Danese,⁷ R. D. Davies,²⁴ R, J. Davis,²⁴ P. de Bernardis,⁴⁷ A. de Rosa,²⁹ G. de Zotti,^{48,7} J. Delabrouille,¹² J.-M. Delouis,^{18,19} F.-X. Désert,⁴⁹ 5 201 C. Dickinson.²⁴ J. M. Diego.¹¹ H. Dole.^{2,50} S. Donzelli.²³ O. Doré.^{13,4} M. Douspis.² C. D. Dowell.¹³ L. Duband.⁵¹ A. Ducout.^{18,52} J. Dunklev.³² X. Dupac.⁵³ C. Dvorkin.⁵ G. Efstathiou.³⁶ F. Elsner.^{20,18,19} T. A. Enflin.⁵⁴ H. K. Eriksen,⁵⁵ J. P. Filippini,^{4,56} F. Finelli,^{29,31} S. Fliescher,⁵⁷ O. Forni,^{8,9} M. Frailis,⁵⁸ A. A. Fraisse,⁴⁰ Feb E. Franceschi,²⁹ A. Frejsel,⁴² S. Galeotta,⁵⁸ S. Galli,¹⁸ K. Ganga,¹² T. Ghosh,² M. Giard,^{8,9} E. Gjerløw,⁵⁵ S. R. Golwala,⁴ J. González-Nuevo,^{11,7} K. M. Górski,^{13,59} S. Gratton,^{37,36} A. Gregorio,^{60,58,61} A. Gruppuso,²⁹ J. E. Gudmundsson,⁴⁰ M. Halpern,⁶² F. K. Hansen,⁵⁵ D. Hanson,^{63, 13, 25} D. L. Harrison,^{36, 37} M. Hasselfield,⁶² \sim G. Helou,⁴ S. Henrot-Versillé,⁴⁵ D. Herranz,¹¹ S. R. Hildebrandt,^{13,4} G. C. Hilton,⁶⁴ E. Hivon,^{18,19} M. Hobson,⁴⁶ [astro-ph.CO] W. A. Holmes,¹³ W. Hovest,⁵⁴ V. V. Hristov,⁴ K. M. Huffenberger,⁶⁵ H. Hui,⁴ G. Hurier,² K. D. Irwin,^{3,66,64} A. H. Jaffe,⁵² T. R. Jaffe,^{8,9} J. Jewell,¹³ W. C. Jones,⁴⁰ M. Juvela,⁶⁷ A. Karakci,¹² K. S. Karkare,⁵ J. P. Kaufman,⁶⁸ B. G. Keating,⁶⁸ S. Kefeli,⁴ E. Keihänen,⁶⁷ S. A. Kernasovskiv,³ R. Keskitalo,²⁶ T. S. Kisner,⁶⁹ R. Kneissl,^{70,71} J. Knoche,⁵⁴ L. Knox,⁷² J. M. Kovac,⁵ N. Krachmalnicoff,²² M. Kunz,^{73,2,74} C. L. Kuo,^{3,66} H. Kurki-Suonio,^{67,75} G. Lagache,^{76,2} A. Lähteenmäki,^{77,75} J.-M. Lamarre,³⁵ A. Lasenby,^{46,37} M. Lattanzi,³⁰ C. R. Lawrence,¹³ E. M. Leitch,⁷⁸ R. Leonardi,⁵³ F. Levrier,³⁵ A. Lewis,⁷⁹ M. Liguori,^{14,15} P. B. Lilje,⁵⁵ M. Linden-Vørnle,⁸⁰ M. López-Caniego,^{53,11} P. M. Lubin,⁸¹ M. Lueker,⁴ J. F. Macías-Pérez,³⁴ B. Maffei,²⁴ D. Maino,^{22,23} N. Mandolesi,^{29,82,30} A. Mangilli,¹⁸ M. Maris,⁵⁸ P. G. Martin,²⁵ E. Martínez-González,¹¹ S. Masi,⁴⁷ P. Mason,⁴ S. Matarrese,^{14,15,83} K. G. Megerian,¹³ P. R. Meinhold,⁸¹ A. Melchiorri,^{47,84} L. Mendes, ⁵³ A. Mennella, ^{22, 23} M. Migliaccio, ^{36, 37} S. Mitra, ^{85, 13} M.-A. Miville-Deschênes, ^{2, 25} A. Moneti, ¹⁸ arXiv:1502.00612v1 L. Montier,^{8,9} G. Morgante,²⁹ D. Mortlock,⁵² A. Moss,⁸⁶ D. Munshi,¹ J. A. Murphy,⁸⁷ P. Naselsky,^{42,43} F. Nati,⁴⁰ P. Natoli,^{30,88,29} C. B. Netterfield,⁸⁹ H. T. Nguyen,¹³ H. U. Nørgaard-Nielsen,⁸⁰ F. Noviello,²⁴ D. Novikov, ⁹⁰ I. Novikov, ^{42,90} R. O'Brient, ¹³ R. W. Ogburn IV, ^{3,66} A. Orlando, ⁶⁸ L. Pagano, ^{47,84} F. Pajot, ² R. Paladini,³⁹ D. Paoletti,^{29,31} B. Partridge,⁹¹ F. Pasian,⁵⁸ G. Patanchon,¹² T. J. Pearson,^{4,39} O. Perdereau,⁴⁵ L. Perotto, ³⁴ V. Pettorino, ⁹² F. Piacentini, ⁴⁷ M. Piat, ¹² D. Pietrobon, ¹³ S. Plaszczynski, ⁴⁵ E. Pointecouteau, ^{8,9} G. Polenta,^{88,93} N. Ponthieu,^{2,49} G. W. Pratt,⁶ S. Prunet,^{18,19} C. Pryke,^{57,28} J.-L. Puget,² J. P. Rachen,^{94,54} W. T. Reach. 95 R. Rebolo. 96, 97, 98 M. Reinecke. 54 M. Remazeilles. 24, 2, 12 C. Renault. 34 A. Renzi, 99, 100 S. Richter,⁵ I. Ristorcelli,^{8,9} G. Rocha,^{13,4} M. Rossetti,^{22,23} G. Roudier,^{12,35,13} M. Rowan-Robinson,⁵² J. A. Rubiño-Martín.^{96,98} B. Rusholme.³⁹ M. Sandri.²⁹ D. Santos.³⁴ M. Savelainen.^{67,75} G. Savini.¹⁰¹ R. Schwarz.⁵⁷ D. Scott, ¹⁰² M. D. Seiffert, ^{13,4} C. D. Sheehy, ^{57,103} L. D. Spencer, ¹ Z. K. Staniszewski, ^{4,13} V. Stolyarov, ^{46,37,104} R. Sudiwala,¹ R. Sunvaev,^{54,105} D. Sutton,^{36,37} A.-S. Suur-Uski,^{67,75} J.-F. Sygnet,¹⁸ J. A. Tauber,¹⁰⁶ G. P. Teply,⁴ L. Terenzi,^{107,29} K. L. Thompson,³ L. Toffolatti,^{108,11,29} J. E. Tolan,³ M. Tomasi,^{22,23} M. Tristram,⁴⁵ M. Tucci,⁷³ A. D. Turner, ^{13,78} L. Valenziano, ²⁹ J. Valiviita, ^{67,75} B. Van Tent, ¹⁰⁹ L. Vibert, ² P. Vielva, ¹¹ A. G. Vieregg, ^{103,110} F. Villa,²⁹ L. A. Wade,¹³ B. D. Wandelt,^{18,19,56} R. Watson,²⁴ A. C. Weber,¹³ I. K. Wehus,¹³ M. White,¹¹¹ S. D. M. White, ⁵⁴ J. Willmert, ⁵⁷ C. L. Wong, ⁵ K. W. Yoon, ^{3,66} D. Yvon, ¹¹² A. Zacchei, ⁵⁸ and A. Zonca⁸¹ ¹School of Physics and Astronomy, Cardiff University,

Queens Buildings, The Parade, Cardiff, CF24 3AA, U.K. ²Institut d'Astrophysique Spatiale, CNRS (UMR8617) Université Paris-Sud 11, Bâtiment 121, Orsay, France ³Department of Physics, Stanford University, Stanford, California 94305, U.S.A. ⁴California Institute of Technology, Pasadena, California, U.S.A. ⁵Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS 42, Cambridge, Massachusetts 02138, U.S.A. ⁶Laboratoire AIM, IRFU/Service d'Astrophysique - CEA/DSM - UNIVERSITÉ Paris Diderot, Bât, 709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex, France

Monete previously Monete Pre

BICEP2/Keck Array と Planck の観測データを同時に 用いてCMB偏光の相関解析. → テンソル-スカラー比 r の尤度曲線を得た. r_{0.05} < 0.12 (信頼度 95%) Lensing B-Modeを 7.0σ で検出.

We report the results of a joint analysis of data from BICEP2/Keck Array and Planck. BICEP2 and Keck Array have observed the same approximately 400 deg² patch of sky centered on RA 0h, Dec. -57.5° . The combined maps reach a depth of 57 nK deg in Stokes Q and U in a band centered at 150 GHz. Planck has observed the full sky in polarization at seven frequencies from 30 to 353 GHz, but much less deeply in any given region $(1.2\,\mu\text{K} \text{ deg in } Q \text{ and } U \text{ at } 143 \text{ GHz})$. We detect 150×353 cross-correlation in B-modes at high significance. We fit the single- and crossfrequency power spectra at frequencies above 150 GHz to a lensed- Λ CDM model that includes dust and a possible contribution from inflationary gravitational waves (as parameterized by the tensor-toscalar ratio r). We probe various model variations and extensions, including adding a synchrotron component in combination with lower frequency data, and find that these make little difference to the r constraint. Finally we present an alternative analysis which is similar to a map-based cleaning of the dust contribution, and show that this gives similar constraints. The final result is expressed as a likelihood curve for r, and yields an upper limit $r_{0.05} < 0.12$ at 95% confidence. Marginalizing over dust and r, lensing B-modes are detected at 7.0 σ significance.

1. イントロダクション

・CMB B-mode偏光の観測からインフレーション起源の 背景重力波が観測できる可能性. → テンソル-スカラー比 r の観測値は, インフレーション モデルの情報を持っている.

 •Planck衛星: 30-353GHzの7つの周波数帯で観測.
 → SPT (South Pole Telescope), ACT, WMAPと合わせて *r*_{0.002} < 0.11
 (信頼度95%, pivot scale *k* = 0.002 Mpc⁻¹)
 の上限値を与えていた.

1. イントロダクション:ダスト

・CMB B-mode 偏光の観測では, 星間ダストの影響が問題.

- 星間磁場でダスト粒子の向きが揃う.
- それらからの熱輻射 → 偏光をもつ.
- 偏光度合からダストの性質や星間磁場が調べられている.

 ・CMB偏光観測に対するダストの影響 は 100-150GHzあたりから大きくなり, 350 GHzでは主要な要因となる.

1. イントロダクション:観測装置

•BICEP2

- 地上(南極)のマイクロ波望遠鏡.
- 2010 2012年に観測.
- 150 GHz で 全天の約1%を観測.
- 2014年 有意なB-modeの観測 結果を発表. → 検証を要した.

Planck

- ESAの宇宙マイクロ波望遠鏡.
- 複数周波数帯で全天を観測.
- BICEP2の領域ではダストの影響 があってもおかしくないという報告.

1. イントロダクション:観測装置

Keck Array

- BICEP2と同様の,地上(南極)に 設置されたマイクロ波望遠鏡.
- 2012 2013年にBICEP2と同じ
 天球領域を150 GHzで観測.
 現在最も高感度のマイクロ波
 偏光望遠鏡 (雑音レベル 57nK).

2-A. Map \rightarrow Power Spectrum

・使用する偏光マップ

- BK-V: BICEP2/Keck Arrayを合わせたもの (ApJへ投稿中).
- PR2 : Planckの全ミッション偏光マップ (2014年発表).
- * データセットを半分に分ける (期間, サーベイ周回, 検出器).
 * 各マップで, 雑音シミュレーションを 500回づつ実行し 検出器雑音を評価 (時系列 -> マップへの影響へ変換).
 ・データの処理
 - フィルタ処理を揃えるために, Planck データを `Planck as seen by BICEP2/Keck' mapへ変換.
 BICEP2/Keckの観測を模擬し, 同様のデータ処理 でマップを作成.

BICEP2/Keckフィルタで再構成されたPlanckマップ

FIG. 1. Planck 353 GHz T, Q, and U maps before (left) and after (right) the application of BICEP2/Keck filtering. In both cases the maps have been multiplied by the BICEP2/Keck apodization mask. The Planck maps are presmoothed to the BICEP2/Keck beam profile and have the mean value subtracted. The filtering, in particular the third order polynominal subtraction to suppress atmospheric pickup, removes large-angular scale signal along the BICEP2/Keck scanning direction (parallel to the right ascension direction in the maps here).

2-B. ダストの影響

・ダスト偏光の空間依存性 - Planck観測から求められていた. $ightarrow D_l^{BB} = A^{BB} (l/80)^{-0.42 \pm 0.02}$ 高緯度の1%パッチ領域でも この依存性に従っている.

・ダスト偏光の周波数依存性 - Planck中緯度観測から SED (Spectrum Energy Distribution)を求める. 修正黒体輻射と一致 $I_d(v) \propto v^{\beta_d} B_v(T_d)$ $\rightarrow T_d = 19.6 \text{ K}, \ \beta_d = 1.59 \pm 0.17$

 $D_l^{BB} = l(l+1)C_l^{BB}/(2\pi)$

2-C. パワースペクトル

2-C. パワースペクトル

Planck各周波数観測データを用いた相関スペクトル

3-A, 3-B. Likelihood Analysis

・相関パワースペクトルから尤度(Likelihood)を求める. - モデルに対する尤度を求める手法: Hamimeche-Lewis近似 (PRD 77 103013, 2008). - Two-component モデル: 振幅 r の IGW +振幅 A_d のダスト (353 GHz, l = 80). * テンソルモードのSpectral Index n_t は0と仮定. * Scalar pivot scale : 0.05 Mpc^{-1} - BICEP2/Keck **&** Planck (217 GHz, 353 GHz) の相関スペクトルを用いて計算. - $\mathbf{X}^{\boldsymbol{\beta}_d} P_{\boldsymbol{\lambda}_d}(\boldsymbol{\nu}) \propto \boldsymbol{\nu}^{\boldsymbol{\beta}_d} B_{\boldsymbol{\nu}}(T_d) \boldsymbol{\mathcal{T}}_d$ $\beta_d = 1.59 \pm 0.17$ を使用 (データからは良く求まらない).

3-A, 3-B. Likelihood Analysis

A_dの尤度

•結果:

r の尤度

- $r = 0.048^{+0.035}_{-0.032}$, r < 0.12 (信頼度95%). Zero-to-Peak 尤度比: 0.38 $\rightarrow r = 0$ の時にこれより小さい値が生じる確率は8%. - $A_d = 3.3^{+0.9}_{-0.8}$. 5.1σ でダストを検出.

3-C. Variations from data and model

 Choice of Planck single-frequency spectra : Planckで用いるデータセットを変える. •Using only 150 and 353 GHz : 217GHzを除いて解析. •Using only BK150xBK150 and BK150xP353 : Planck 353GHzだけの場合を除く. • Extending the bandpower range : 各スペクトルで 20 < l < 330 の9点を使用. •Including EE spectra : EEスペクトルを補正して使用 (1依存性を求める際). • Relaxing the β_d prior : 周波数依存性の補正 β_d を 1.59でなく 1.3~1.9まで変化.

3-C. Variations from data and model

• Varying the dust power spectrum shape : ダストの 1 依存性の冪を-0.42でなく -0.8~0 に変化. Using Gaussian determinant likelihood : 尤度を求める際の分布モデルとしてGauss分布を用いる. • Varying the HL fiducial model : 1 Fiducial analysis 共相関計算でr = 0.2のIGWを追加. Y1xY2 0.9 no 217GHz Only BKxBK&BKxP353 0.8 Adding synchrotron : 9 bandpowers Inc. EE (EE/BB=2) 0.7 relax β_d prior 19.0 シンクロトロン放射のモデルを加え、 Gauss det alt. HL fid. model 低周波数観測データも用いる. 0.40.3 Varying lensing amplitude : 0.2 ACDMに加えるレンズの効果を変化. 0.1 0

0.05

0

0.1

0.15

0.2

0.25

0.3

4-A. Likelihood Variation

・ダストだけのモデルでのシミュレーション

- r = 0, $A_d = 3.6 \mu K^2$ でデータ作成 う解析.
- 空間・周波数依存性を加味.
 Lensed ACDM+noise
 → 予想通り, ~50%が
 0以上で最大値などコンシ
 ステントな結果.

4-B. Subtraction of scaled Data

・クリーニングされたデータの解析. - BICEP2/Keckスペクトルから、 相関スペクトルを引いたもの: $(BK \times BK - \alpha BK \times P)$ (ただし α = 0.04) $1-\alpha$ を作成し解析. - 実データと同様に, r の尤度を求める. → ダストの平均量は引かれる はずだが、その分散成分は 残る.

5. Possible Causes of Decorrelation

・ダスト放射の周波数依存性が場所によって違う可能性.

 Planckデータ(全天の24%)で評価.
 → 修正黒体モデルと良くあっている.
 ダストだけモデルでのシミュレーションで 10%振幅を小さくしてみる.
 → r が 0.018倍だけ上にシフト.

•校正,解析,...

- EEスペクトル(BK150xBK150, BK150xP143) の振る舞いから, 解析手法で相関が失われる かがチェックできる.
 - → Decorrelationの影響は 2%以下.

まとめ

BICEP2/KeckとPlanckデータの相関解析を行った.
 → テンソル-スカラー比の上限を与えた.

- r < 0.12 (信頼度95%).
- Zero-to-Peak 尤度比: 0.38
 - $\rightarrow r = 0$ の時にこれより小さい値が生じる確率は8%.
- ・今後,
 - Planck単体で大スケールでの探査.
 - 小スケールの探査では、今回の BICEP2/Keck程度の感度が他 の周波数帯でも必要.
 → Keck Arrayで 80-90GHz観測 (2014). BICEP3 95 GHzを追加 (2015-2016).

おしまい

100000

10,000,000,000,000,000

20.00.0162.00.000

研究室輪講 (2015年 2月 26日, 東京大学)

and the constraint of the second s

the party of the type of the party of the pa

