

博士論文

光リング共振器を用いた ローレンツ不変性の検証 (Tests of Lorentz Invariance with an Optical Ring Cavity)

概要

- 特殊相対論、電磁気学のLorentz不変性の検証実験 特に、光速の行き帰りの差
- ・ 光リング共振器を用いた新手法の装置を開発
- 1年に渡る光速の異方性探査
- これまでの上限値を1桁更新(世界最高精度) $\left| \frac{\delta c}{c} \right| \lesssim 6 \times 10^{-15}$
- 高次のLorentz不変性の破れに 初の上限値 $c + \delta c$

c -

出版論文

- Y. Michimura, N. Matsumoto, N. Ohmae, W. Kokuyama, Y. Aso, M. Ando, K. Tsubono, Phys. Rev. Lett. **110**, 200401 (2013) *New Limit on Lorentz Violation Using a Double-Pass Optical Ring Cavity*
- Y. Michimura, M. Mewes, N. Matsumoto, Y. Aso, M. Ando, Phys. Rev. D 88, 111101(R) (2013) Optical cavity limits on higher order Lorentz violation
- Y. Michimura, N. Matsumoto, N. Ohmae, W. Kokuyama, Y. Aso, M. Ando, K. Tsubono, Proceedings of the Sixth Meeting on CPT and Lorentz Symmetry, edited by V. A. Kostelecký, pp.216-219 (World Scientific, Singapore, 2014) *Testing Lorentz Invariance with a Double-Pass Optical Ring Cavity*

目次

1. 研究背景

動機、光速異方性探査の先行研究

2. 測定原理

- 3. 実験装置 リング共振器、回転機構、データ取得
- データ解析
 異方性の球面調和関数展開、拡張標準理論、 解析方法、解析結果
- 5. 結論
 - まとめ、今後の展望

1. 研究背景

特殊相対性理論

- 2つの原理 光速不変の原理 光速は伝播方向、 光源の速度によらない
 特殊相対性原理 どの慣性系においても物理法則は不変
- Lorentz不変性は宇宙の基本的な対称性である
- 発表から100年以上、様々な実験的検証
 一度も「破れ」は見つかっていない

Lorentz不変性の破れ

• 量子重力理論からの示唆 あるスケールで、Lorentz 不変性が破れている可能性 例えば、 $\delta c/c \sim 10^{-17}$ の オーダーで

http://www.cpt.univ-mrs.fr/~rovelli/loop_quantum_gravity.jpg

 CMBの観測からの示唆 ^{mm} 絶対静止系がある可能性 (異方性の双極子成分が ゼロになるCMB静止系)

http://en.wikipedia.org/wiki/File:WMAP_2010.png

特殊相対論の検証

- その中でも「光速不変の原理」を検証
- 2種類の光速の等方性
 片道光速の等方性(経路と復路の光速は等しい)
 往復光速の等方性(直交2方向の往復光速は等しい)

往復光速の異方性探査の歴史

往復光速の異方性探査の歴史

レーザー干渉計による異方性探査

- 往復に比べ、片道の検証精度は数桁悪かった
- 通常のレーザー干渉計、光共振器は往復光速の異 方性にしか感度を持たない
- 媒質を入れて非対称性を作り、感度を持たせる

非対称リング共振器

光速の高次の異方性

- 光速の異方性は球面調和関数展開できる
- 高次の異方性はLagrangianのLorentz不変性を破る 高階微分項から $c + \delta c$ **I=**0 (拡張標準理論) $c + \delta c$ δc 往復光速 の異方性 片道光速 の異方性

18

これまでの上限値

- 偶パリティ実験はl = evenのみを測定可能
- 奇パリティ実験はl = oddのみを測定可能

- 片道光速の異方性探査の精度向上
- l=3の異方性の初探査

2. 測定原理

非対称光リング共振器

• 媒質を入れて非対称にすると、Lorentz不変性の 破れに感度を持つ(共振周波数がずれる)

両回りの共振周波数を比較

- 共振器長変化は両回りに同相に効く
- 同相雑音除去により、環境変化に強くなる
 → 高真空、高レベル防振、温度制御が不要
- 比較はダブルパス構成で行う

ダブルパス構成 (1/4) レーザー光を反時計回りに入射

24

ダブルパス構成 (2/4)

・レーザー周波数を反時計回りの共振周波数(𝒫+)に
 制御

ダブルパス構成 (3/4)

• 透過光を打ち返し、時計回りに再入射

ダブルパス構成 (4/4)

その反射光から、LV信号が得られる(null測定)

- ・ 光路に媒質を入れる

 → 片道光速の異方性に感度を持つように
 W. S. N. Trimmer+, Phys. Rev. D 8, 3321 (1973)
- 反時計回りと時計回りの共振周波数を比較

 → 同相雑音除去によって環境変動に強くなる

 F. Baynes+, Phys. Rev. Lett. 108, 260801 (2012)
- ・ ダブルパス構成による比較
 → null測定になる (本実験の新アイディア)
- ・ 媒質として屈折率の大きいシリコンを使用
 → 異方性に対する感度がガラスに比べ約4倍
- ・ 光共振器の回転中に連続データ取得
 → 高次の異方性に感度

• $\left| \frac{\delta c}{c} \right| \sim 10^{-13}$ を超える精度で異方性探査を行う →1年間にわたる積分を仮定すると、 周波数雑音として $\frac{\delta \nu}{I} \lesssim 10^{-10} / \sqrt{\text{Hz}}$ (装置の回転周波数で)

- ・ 雑音見積もりを行い、装置を設計 散射雑音、熱雑音は目標の6桁下 温度安定化、防振は不要
- 回転台の回転角速度変動は
 Sagnac効果により雑音となる

回転

リング共振器の写真

スペーサーは スーパーインバー製 (低熱膨張合金 10⁻⁷/K)

鏡を取り付けた状態

この中にシリコン

シリコン (赤外光に 対して透明 n = 3.69)

電気信号線 (信号取得、電源供給)

レーザー光源_. (1550 nm)

真空容器+遮光シート (中に光学系)

• 12秒で1回転、正回転と逆回転を繰り返す

得られる生デー

用いるデータ

観測データ

- ・ 東京大学(本郷)で2012年7月から2013年10月まで
- 測定日数: 393日 総回転数: 167万回転
- Duty cycle: 53% (10月中旬以降は64%)

4. データ解析

異方性の球面調和関数展開

・ 展開 $c(\theta,\phi) = 1 + \sum_{l=0}^{\infty} \sum_{m=0}^{l} \operatorname{Re} \left[(\overline{y}_{l}^{m})^{*} Y_{l}^{m}(\theta,\phi) \right]$ ・ \overline{y}_{l}^{m} は複素数で、 Lorentz不変性が 破れていなければ ゼロ

= 3

- 双極子成分と六重極成分を探査 $\rightarrow \overline{y}_1^m \ge \overline{y}_3^m$ を測定
- ・ 座標系を定義する必要がある
 → SCCEF

SCCEF

- Sun centered celestial equatorial frame
- CMB静止系に対して(ほぼ)一定速度で運動

復調振幅から球面調和関数の係数

• 28個の復調振幅は係数 \overline{y}_l^m と結び付けられる

 $c(\theta,\phi) = 1 + \sum_{l=1}^{\infty} \sum_{l=1}^{l} \operatorname{Re}\left[(\overline{y}_{l}^{m})^{*}Y_{l}^{m}(\theta,\phi)\right]$

m=0

• *l* = 1, 3を考えると実部と虚部 合わせて10個の係数

球面調和関数の係数の測定値

	• 2	8個の復調	$\operatorname{Coefficient}$	Measurement			
	10個の球面調和関数係数に						0.4 ± 4.4
	-					$\operatorname{Re}[\overline{y}_1^1]$	-5.7 ± 6.3
						$\operatorname{Im}[\overline{y}_{1}^{1}]$	-3.2 ± 6.2
/=	- - - - - - - - - - - - - - - - - - -		\overline{y}_{3}^{0}	0.1 ± 1.9			
						$\operatorname{Re}[\overline{y}_3^1]$	2.9 ± 2.2
$m_{ m r}$	m_\oplus	$C^C_{m_{\mathrm{r}}m_\oplus}$	$C^S_{m_{\mathrm{r}}m_\oplus}$	$S^C_{m_{\rm r}m_\oplus}$	$S^S_{m_{\rm r}m_\oplus}$	$\operatorname{Im}[\overline{y}_3^1]$	-3.2 ± 2.1
1	0	-0.1 ± 1.0	-	0.2 ± 1.0	-	$\operatorname{Re}[\overline{y}_3^2]$	2.1 ± 1.8
1	1	-0.6 ± 1.4	-1.2 ± 1.4	-0.3 ± 1.4	1.0 ± 1.4	$\operatorname{Im}[\overline{y}_3^2]$	1.5 ± 1.8
1	2	-0.9 ± 1.4	-0.2 ± 1.4	-0.1 ± 1.4	1.0 ± 1.4	${ m Re}[\overline{y}_3^3]$	-0.2 ± 2.2
1	3	-0.8 ± 1.4	0.2 ± 1.4	-0.5 ± 1.4	0.6 ± 1.4	${ m Im}[\overline{y}_3^3]$	-0.7 ± 2.2
3	0	0.12 ± 0.46	-	0.15 ± 0.46	-	(3	系数 [1 0 ⁻¹⁵]
3	1	-0.79 ± 0.64	-1.1 ± 0.65	-0.48 ± 0.64	-0.51 ± 0.65	171	
3	2	-1.1 ± 0.65	0.57 ± 0.65	-0.46 ± 0.65	0.21 ± 0.65		
3	3	0.40 ± 0.65	0.16 ± 0.65	-0.36 ± 0.64	0.75 ± 0.65		52

球面調和関数の係数の測定値

- 1oの統計的不確かさを表示
- 2σ でゼロと一致 → Lorentz不変性を検証

先行研究との比較

 系統的不確かさの見積もり 最大でも統計的不確かさの10%程度 								
原因	量	割合	オフセット					
Sagnac効果	< 1mrad/sec	<2%	「な生じる					
回転台の傾き	< 0.2 mrad	<10%	」もの					
共振器の離調	-	3%	7					
伝達関数測定	-	3%						
レーザー周波数 変調効率測定	12.9±0.6 MHz/V	5%	┃ 較正の ┃ 不確かさ					
シリコンの屈折率	3.69 ± 0.01	0.4%						
共振器長	192±1 mm	0.5%	55					

高次のLorentz不変性の破れ

- 拡張標準理論 (SME: standard model extension)
 可能な限りのLVをパラメータ化した検証理論
 D. Colladay & V. A. Kostelecký, PRD 58, 116002 (1998)
- 電磁場のLagrangianにLV項を無限に追加
- ・ $\hat{k}_{F}^{(d)}$ はLVがなければゼロ、dは質量次元を表す

高次LVへの上限値

・d = 6の奇パリティ成分へ10³ GeV⁻²の上限値

• d = 8の奇パリティ成分へ10¹⁹ GeV⁻⁴の上限値

Dimension	Coefficient	Measurement	(世界初)
d = 6	$(\overline{c}_{F}^{(6)})_{110}^{(0E)}$	$(-0.1 \pm 1.5) \times 10^3 \text{ GeV}^{-2}$	
	$\operatorname{Re}[(\overline{c}_{F}^{(6)})_{111}^{(0E)}]$	$(-0.8 \pm 1.1) \times 10^3 \text{ GeV}^{-2}$	カモフラージュ係数
	$\operatorname{Im}[(\overline{c}_{F}^{(6)})_{111}^{(0E)}]$	$(-0.6 \pm 1.0) \times 10^3 \text{ GeV}^{-2}$	$(\overline{C}_{E}^{(d)})_{nim}^{(0E)}$
d = 8	$-0.020(\overline{c}_F^{(8)})_{110}^{(0E)} + (\overline{c}_F^{(8)})_{310}^{(0E)}$	$(-0.2 \pm 1.9) \times 10^{19} \text{ GeV}^{-4}$	
	$\operatorname{Re}[-0.020(\overline{c}_F^{(8)})_{111}^{(0E)} + (\overline{c}_F^{(8)})_{311}^{(0E)}]$	$(1.4 \pm 1.3) \times 10^{19} \text{ GeV}^{-4}$	K
	$\operatorname{Re}[-0.020(\overline{c}_F^{(8)})_{111}^{(0E)} + (\overline{c}_F^{(8)})_{311}^{(0E)}]$	$(0.1 \pm 1.3) \times 10^{19} \text{ GeV}^{-4}$	
	$(\overline{c}_{F}^{(8)})_{330}^{(0E)}$	$(-0.8 \pm 3.3) \times 10^{19} \text{ GeV}^{-4}$	
	$\operatorname{Re}[(\overline{c}_{F}^{(8)})_{331}^{(0E)}]$	$(-0.3 \pm 1.9) \times 10^{19} \text{ GeV}^{-4}$	\$\$ \$
	$\mathrm{Im}[(\overline{c}_{F}^{(8)})_{331}^{(0E)}]$	$(-2.8 \pm 1.9) \times 10^{19} \text{ GeV}^{-4}$	****
	$\operatorname{Re}[(\overline{c}_{F}^{(8)})_{332}^{(0E)}]$	$(2.2 \pm 1.3) \times 10^{19} \text{ GeV}^{-4}$	· · · · · · · · · · · · · · · · · · ·
	$\operatorname{Im}[(\overline{c}_{F}^{(8)})_{332}^{(0E)}]$	$(0.2 \pm 1.3) \times 10^{19} \text{ GeV}^{-4}$	* * ***
	$\operatorname{Re}[(\overline{c}_{F}^{(8)})_{333}^{(0E)}]$	$(-0.1 \pm 1.6) \times 10^{19} \text{ GeV}^{-4}$	**
	$\mathrm{Im}[(\overline{c}_{F}^{(8)})_{333}^{(0E)}]$	$(-0.1 \pm 1.6) \times 10^{19} \text{ GeV}^{-4}$	58

先行研究との比較

 これまでは偶パリティ成分への上限値しか なかった
 d = 6の偶パリティ成分への上限値~10⁸ GeV⁻²
 d = 8の偶パリティ成分への上限値~10³³ GeV⁻⁴

S. R. Parker+, Phys. Rev. Lett. 106, 180401 (2011)

- ・これに比べると d = 6 は6桁の更新 d = 8 は14桁の更新
- 用いた電磁波の周波数が違う
 本実験は赤外光(~200THz)
 Parker+(2011)はマイクロ波(~10GHz)

LVエネルギースケールへの上限値

- ・LVが起こるエネルギースケールを M_* とすると、 高次LVは $M_*^{(4-d)}$ で小さくなっていくはず
- 今回の結果は $M_*\gtrsim 0.03~{
 m GeV}$ ということを示唆
- c.f. Planckエネルギー: 10¹⁹ GeV 電弱のエネルギー: 10² GeV

 $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{4}F_{\kappa\lambda}(\hat{k}_{F}^{(4)})^{\kappa\lambda\mu\nu}F_{\mu\nu} + \frac{1}{4}F_{\kappa\lambda}(\hat{k}_{F}^{(6)})^{\kappa\lambda\mu\nu}F_{\mu\nu} + \frac{1}{4}F_{\kappa\lambda}(\hat{k}_{F}^{(8)})^{\kappa\lambda\mu\nu}F_{\mu\nu} + \frac{1}{4}F_{\kappa\lambda}(\hat{k}_{F}^{(6)})^{\kappa\lambda\mu\nu}F_{\mu\nu} + \frac{1}{4}F_{\mu\nu}(\hat{k}_{F}^{(6)})^{\kappa\lambda\mu\nu}F_{\mu\nu} + \frac{1}{4}F_{\mu\nu}(\hat{k}_{F}^{(6)})^{\kappa\lambda\mu\nu}F_{\mu\nu} + \frac{1}{4}F_{\mu\nu}(\hat{k}_{F}^{(6)})^{\kappa\lambda\mu\nu}F_{\mu\nu} + \frac{1}{4}F_{\mu\nu}(\hat{k}_{F}^{(6)})^{\kappa\mu\nu}F_{\mu\nu} + \frac{1}{4}F_{\mu\nu}(\hat{k}_{F}^{(6)})^{\kappa\mu\nu}F_{\mu\nu}$

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}^{(4)} + \frac{1}{M_*^2} \mathcal{L}^{(6)} + \frac{1}{M_*^4} \mathcal{L}^{(8)} + \cdots$$

まとめ

- ・ 光リング共振器により光速の行き帰りの差を探査 シリコンによる大きな非対称性 ダブルパス構成によるnull測定 1年間に渡る探査
- 有意な異方性は見つからず、上限値をつけた 双極子成分(世界新) 六重極成分(世界初) $\left|\frac{\delta c}{c}\right| \lesssim 6 \times 10^{-15}$ $\left|\frac{\delta c}{c}\right| \lesssim 2 \times 10^{-15}$
- ・ 拡張標準理論の高次のLorentz不変性破れのうち奇 パリティ成分に初の上限値 $(\overline{c}_{F}^{(6)})_{njm}^{(0E)} \lesssim 1 \times 10^{3} \text{ GeV}^{-2} (\overline{c}_{F}^{(8)})_{njm}^{(0E)} \lesssim 2 \times 10^{19} \text{ GeV}^{-4}$

- Planckスケールで規格化された電弱スケール $\delta c/c \sim 10^{-17}$ に到達するには2桁の精度向上が必要
- 回転に起因する振動からの雑音の低減が必要 → 回転台の改善(より大きく、など) 光学系の改善(モノリシック光学系など)
- 傾きに起因する系統的 10⁻⁹ Ηz] $^{\prime
 u}$ [1/ $^{\prime}$ 不確かさの低減が必要 requirement 10⁻¹⁰ iractional frequency noise $\delta
 u/$ $\rightarrow 2$ urad以下 回転時 10-11 (傾き制御の導入 10⁻¹², で十分実現可能) 10⁻¹³ 10⁻¹⁴ 10^{-1} 10^{0} 10^{2}

10

 10^{-10}

frequency [Hz]

63

将来計画

 原理的な雑音レベル(散射雑音、熱雑音)に到達すれば *δc/c* ~ 10⁻²⁰ も可能 入射パワー1 mW フィネス 120 温度 300 K のままで可能
 衛星搭載などにより、より高精度の異方性探査

補足スライド

拡張標準理論詳細

- SMEにおける光子のLagrangian密度 $\mathcal{L}_{photon} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}\epsilon^{\kappa\lambda\mu\nu}A_{\lambda}(\hat{k}_{AF})_{\kappa}F_{\mu\nu} - \frac{1}{4}F_{\kappa\lambda}(\hat{k}_{F})^{\kappa\lambda\mu\nu}F_{\mu\nu}$ CPT対称性破る項
- CPT対称性を破る項を無視、真空の複屈折を無視 $\mathcal{L}_{\text{photon}} = -\frac{1}{\Lambda} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} F_{\kappa\rho} (\hat{c}_F)^{\mu\nu} F_{\nu}^{\rho}$ ポテンシャル スカラーポテンシャルを球面調和関数展開 $\hat{\Phi}_F = \sum \omega^{d-2-j} p^j{}_0 Y^m_l(\hat{\boldsymbol{p}}) (c_F^{(d)})^{(0E)}_{jlm}$ dilm今回測定する係数 • 真空中の分散を無視 $\tilde{\Phi}_F = \sum \omega^{d-4-j} p^j{}_0 Y^m_l(\hat{\boldsymbol{p}}) (\overline{c}_F^{(d)})^{(0E)}_{jlm}$ djlm67 光子の運動量ベクトル

Lorentz不変性の破れの示唆

- 量子重力理論
 e.g. Hořava-Lifshitz gravity
- 非可換場の理論
- ・時間変化する結合定数
 ・時間・空間依存性があってもおかしくない
 LVやCPT対称性の破れと関連があるかも
- 超弦理論
 空間の最小単位
- 多元宇宙論、ブレーン宇宙論
- GZK限界を超える高エネルギー宇宙線の発見
- ダークマター、ダークエネルギー
 一般相対論を超える重力理論が必要

Hořava Gravity

- 場の量子論の紫外発散の問題を解決する方法の一つ P. Hořava, Phys. Rev. D 79, 084008 (2009)
- 重力のLagrangianに高階微分の項を加える $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}^{(4)} + \frac{1}{M_*^2} \mathcal{L}^{(6)} + \frac{1}{M_*^4} \mathcal{L}^{(8)} + \cdots$
- 摂動可能にするためには $M_* \lesssim 10^{16} {
 m GeV}$

A. Papazoglou & T. P. Sotiriou, Phys. Lett. B 685, 197 (2010)

・近距離重力実験から

 $M_* \gtrsim 10^{-12} \text{ GeV}$

C. M. Will, Living Rev. Relativity **9**, 3 (2006) J.C. Long & V. A. Kostelecký, arXiv:1412.8362

非可換幾何学

- 一般相対性理論はリーマン幾何学に基づく
- 超弦理論は非可換幾何学に基づく?

 $[x^{\mu}, x^{\nu}] = iL_{\rm NC}^2 \theta^{\mu\nu}$

→Lorentz不変性を破る • 特徴的な長さスケールを $L_{\rm NC}$ とすると $\left(\frac{L_{\rm NC}}{\hbar c}\right)^{d-4} = \left(\frac{L_{\rm NC}}{2 \times 10^{-16} {\rm ~GeV} \cdot {\rm m}}\right)^{d-4}$ 程度のLVが期待される

 大きな余剰次元シナリオでは 1e-19 m 程度 (1 TeV 程度)かもしれない

D. Mattingly, Living Rev. Relativity 8, 5 (2005) 70

その他のLorentz不変性検証

- 真空の分散、複屈折
 ガンマ線バーストの観測
- 重力逆二乗則の検証
 Lunar Laser Ranging、連星の軌道発展、
 近距離重力
- ニュートリノ混合角、速度
 Double Chooz、MINOS、IceCube、制動放射
 ニュートリノ振動は質量なくてもLVあれば起こる
- 陽子、中性子、電子
 メスバウアー効果、核磁気共鳴、
 スピン結合の異方性
- 粒子・反粒子比較によるCPT対称性の破れ探査 CPT対称性の破れはLorentz不変性の破れを意味する 71

- フィネス、入射パワー
 散射雑音が効かないように設計(目標の6桁下)
 フィネスが高すぎても制御しにくい
- レーザー強度雑音
 測定したところ、安定化不要だった
- 共振器構成

共振器が長い方が原理的には振動が効きにくい が、長い方が振動感度が高い

→ 後者を優先し、なるべくコンパクトに

• 温度安定化

測定したところ、CMRR1/100なら効かなかった
偏光解析法の原理

- 三角形リング共振器の偏光選択性を利用 p偏光が共振時はs偏光が非共振
- 反射光に含まれるs偏光とp偏光の干渉から、
 共振周波数と入射光周波数の差がわかる
- 2つの光検出器を用いることで、 強度雑音の影響を低減

市販のモータとその制御システムを利用
 回転速度制御、正回転と逆回転の繰り返し

Baynes+(2012)との比較

	Baynes+	Michimura+	
上限值	2×10 ⁻¹³	6×10 ⁻¹⁵	
光学系構成	シングルパス	ダブルパス	単純化
	Laser Laser		
同相雑音除去	\bigcirc	\bigcirc	4倍得
媒質	UV融解石英 n = 1.44	シリコン n = 3.69	高次へ感度
装置の回転と データ取得	180°回転毎に データ取得	360°回転中 連続的にデータ取得	データ多
観測日数	50日 (6.1e3回転)	369日(1.7e6回転)	76

Bocquet+(2010)との比較

- コンプトンエッジのエネルギーが地球自転に伴って変化しないことから上限値
 - $\left|\frac{\delta c}{c}\right| < 1.6 \times 10^{-14}$ (95% C.L.)
- 変化の位相まで見ていない
 ため、2方向の片道光速の
 異方性を分離できていない
- 装置回転を行っていない
 ため、Z軸方向の異方性を
 測定できない

く しんしょう しんしょう ひ離できず

測定できず

- 環境磁場によるシリコンの屈折率変化
 両回りの共振周波数の差は生まない
- 重力赤方偏移の影響
 計量が変わるだけなので、原理的に共振周波数
 をずらさない

Cheat Sheet

- rotation frequency f_rot = 0.083 Hz (T_rot = 12 sec)
- wavelength λ = 1550 nm
- laser frequency v = 1.9e14 Hz
- input power P0 = 1 mW
- finesse F = 120
- cavity length L = 140 mm
- silicon length d = 20 mm
- silicon refractive index n = 3.69
- silicon dn/dT = 2e-4 / K
- silicon thermal expansion = 3e-6 /K •
- Super Invar thermal exp. = ~ 1e-7 /K
- silicon AR loss I < 0.5 % / surface
- incident angle θ = 9.5 deg
- FSR = 1.5 GHz
- FWHM = 12 MHz

- current sensitivity ~ 6e-13 /rtHz (~ 4e-11 /rtHz when rotated)
- shot noise ~ 6e-16 /rtHz
- thermal noise ~ 8e-16 /rtHz (all @ 0.1 Hz)
- Sun speed in CMBR = 369 km/s
- orbital speed of Earth = 30 km/s
- rotational speed of Earth = 0.4 km/s
 - History Jul 2011: idea Nov 2011: first run (10hour) Jul 2012: data taking started Oct 2012: continuous data taking Oct 2013: shut down
- cost < ~200万円