

安東 正樹 (東京大学 / 国立天文台) + DECIGO WG

BICEP2, (POLARBEAR,...) マイクロ波望遠鏡を用いた 宇宙背景放射 B-mode偏光 成分の観測.

DECIGO, (KAGRA, aLIGO,...) 重力波望遠鏡を用いた 宇宙背景重力波の観測.

2

・原始重力波の観測 ・宇宙重力波望遠鏡DECIGO ・ミッションの現状

原始重力波シンポ (日本物理学会 2014年秋季大会, 2014年9月19日, 佐賀大学)

3

4

原始重力波の観測

インフレーションからの重力波

計量の量子揺らぎとして生成 → 初期に生成された重力波ほど, 長くインフレーションで引き延ばされ,最近に宇宙の地平線内へ.

Journal of Cosmology and Astroparticle Physics 06 (2008) 020.

5

インフレーションからの重力波スペクトル

初期の方が宇宙のサイズ(因果律を持つ領域)が小さい. → 初期に地平線内入ってきた重力波ほど高周波.

重力波エネルギー密度比

原始重力波シンポ (日本物理学会 2014年秋季大会, 2014年9月19日, 佐賀大学)

7

地平線内に入った重力波は, 宇宙膨張とともに発展. → スペクトルの形は、宇宙進化の情報を持っている.

背景重力波の観測

原始重力波シンポ (日本物理学会 2014年秋季大会, 2014年9月19日, 佐賀大学)

DECTGO

背景重力波探査の現状

10

重力波

重力波の効果
- 自由質点間の距離の変化
- 大きさを持った物体への潮汐力

重力波の振幅 h: 無次元の歪み量

 $h \sim \delta L/L$ δL :距離変動 L:2点間の距離

h =10⁻²⁴ → 1m**の距離が**10⁻²⁴ m 伸縮.

レーザー干渉計型重力波検出器

レーザー干渉計 (マイケルソン干渉計)

- レーザー光源からの光を
 直交する2方向に分岐.
 懸架された鏡で打ち返し干渉.
- 光検出器で観測.

重力波が入射

腕の長さの差動変動を 干渉光量の変動として検出

フォアグラウンド重力波

多くの連星系からの重力波 → 分離できない. ↓ 10⁻¹⁰ – 0.1 Hzの周波数帯 で, 原始重力波観測に対する Foreground雑音 となる.

原始重力波観測の「窓」

・さまざまな周波数帯で原始重力波観測を観測することで 宇宙の進化の情報を得ることが可能.

・インフレーションからの重力波観測には低周波数が有利.

・0.1Hz以下の周波数帯では,フォアグラウンド重力波が存在.

 $\overline{\mathbf{v}}$

インフレーションからの重力波観測には, 0.1 -1 Hzの周波数帯が良い.

 $\Omega_{\rm GW} \sim 10^{-16} - 10^{-15} \rightarrow \tilde{h}_{\rm GW} \sim 10^{-24} \text{ Hz}^{-1/2}$ (@ 0.1Hz)

17

重力波の効果:2点間の固有距離の変化

重力波

経営 1.5 (意Km

捕まえるのはとても大変

距離の変化 10⁻¹³ m ・ 水素原子の1/1000

・重力波 – 強い透過力を持ち, 初期宇宙の情報を伝える.

・スペクトルの形:初期揺らぎ+宇宙進化の歴史.

CMB Bモード偏光から もある程度推定可能. 観測周波数と宇宙の時代が対応. 高周波数 → より初期宇宙以降の 情報.

- Reheating温度(物質の種の形成)
- 宇宙の熱進化史 ..

☆ 最後のDark Ageの観測: 地上加速器 と CMB-B偏光の間の時代をみる.

GW from Inflation

Energy density \propto Tensor-Scalar Ratio (r). Power spectrum : Evolution history of the Universe.

20

DECIGO (でさいご)

- 宇宙重力波望遠鏡 -

宇宙重力波望遠鏡 DECIGO

DECIGO (DECI-hertz interferometer Gravitational wave Observatory)

宇宙のはじまりを直接観測する. ビッグバン宇宙論において、空間・物質の種が, いかに形成されたかを観測によって解き明かす.

Pre-Conceptual Design

Interferometer Unit: Differential FP interferometer

Arm length:1000 kmFinesse:10Mirror diameter:1 mMirror mass:100 kgLaser power:10 WLaser wavelength:532 nm

S/C: drag free 3 interferometers

DECIGO

DECIGO (Deci-hertz interferometer Gravitational wave Observatory) 観測周波数 ~0.1 Hz C eLISA と地上望遠鏡 の間の周波数帯

DECIGOの主な観測ターゲット

中間質量BH の連星合体 中性子星連星 背景重力波 大質量BHと銀河の形成 宇宙論パラメータ (Inflation, Dark energy) 基礎物理法則

干涉計方式

光トランスポンダー方式 vs 直接干渉方式 感度曲線と期待できるサイエンスの検討 決定要因: 連星によるconfusion noise

干渉計基線長:回折損失で制限されている

Effective reflectivity (TEM₀₀ → TEM₀₀) Laser wavelength : 532nm Mirror diameter: 1m Optimal beam size

1000 km がほぼ最大値

十海計基錄長

感度要求值

測距雑音

Shot noise $3 \times 10^{-18} \text{ m/Hz}^{1/2}$ (0.1 Hz) $\Rightarrow 10 \text{ of KAGRA in phase noise}$

Other noises should be well below the shot noise Laser freq. noise: 1 Hz/Hz^{1/2} (1Hz) Stab. Gain 10⁵, CMRR 10⁵

加速度雑音

Force noise $4x10^{-17}$ N/Hz^{1/2} (0.1 Hz) $\swarrow x 1/50$ of LISA

External force sources Fluctuation of magnetic field, electric field, gravitational field, temperature, pressure, etc.

軌道の候補 候補:太陽周りのレコード盤軌道 Relative acc. 4x10⁻¹² m/s² (Mirror force ~10⁻⁹ N)

4つの干渉計ユニット

2 overlapped units → Cross correlation
2 separated units → Angular resolution

フォアグラウンドクリーニング

30

DECIGOの観測周波数帯: WD binary foreground はない. → 宇宙論的観測にひらけた「窓」

DECIGOは ~ 10⁵ 個の 連星中性子星を観測. → GWBへのフォアグラウ ンドになり得る.

原理的にはそれらを特定 し, 差し引くことが可能.
ただし、高い精度要求 Δm/m < ~10⁻⁷ %

Considering "Conceptual design"

設計検討継続中

Preliminary

10⁻¹⁸

10⁻¹⁹

10⁻²⁰

10⁻²¹

10⁻²²

10⁻²³

10⁻²⁴

10⁻²⁵

Strain Sensitivity [Hz^{-1/2}]

Parameters tuned

Accel, noise

hot noise

hermal

Sub. Browniar

Thermal(sub.

thermoelast

- •Arm length: 1,500 km
- Laser power: 30 W
- Laser wavelength: 532 nm
- Mirror diameter: 1.5 m
- Mirror mass: 100 kg
- Mirror reflectivity: 77.3%
- Cavity g-param: 0.1

This is the first step to considering the conceptual design.

Next:

 Confirm the calculations.
 Find the realistic way to realize this!

原始重力波シンポ (日本物理学会 2014年秋季大会, 2014年9月19日, 佐賀大学)

By T.Akutsu

prove

Radi. press

開発の現状

- DECIGO Pathfinderを中心に -

DECIGO実現へのロードマップ

Figure: S.Kawamura

DECIGOで必要とされる先端技術

・DECIGOで必要とされる先端技術

 レーザー干渉計による精密計測技術。
 宇宙空間において、レーザー干渉計を用いた精密変動 計測・外乱除去が行われた例はない。

☆ DPFによる宇宙実証.

(2) 長基線長の精密フォーメーションフライト技術. 基線長1000km規模でのフォーメーションフライトが 行わた例はない.

Pre-DECIGOによる宇宙実証.

DECIGOのための技術実証

	DPF の目標	Pre-DECIGOの目標	DECIGO の要求値
宇宙干渉計	宇宙空間では初めての FP干渉計(30cm)動作. 10 ⁻¹⁶ m/Hz ^{1/2} の変位 感度. 10 ⁻¹⁵ N/Hz ^{1/2} の 外力雑音.	長基線長FF(100km). でのFP干渉計動作. 10 ⁻¹⁷ m/Hz ^{1/2} の変位 感度. 10 ⁻¹⁶ N/Hz ^{1/2} の 外力雑音.	感度 3x10 ⁻¹⁸ m/Hz ^{1/2} . 外力雑音 10 ⁻¹⁷ N/Hz ^{1/2} . 基線長 1000km.
安定化 レーザー光源	現在地上で実現されて いる最も良い安定度 0.5Hz/Hz ^{1/2} の宇宙空間 での実現.出力 100mW.	現在地上で実現されて いる最も良い安定度 0.5Hz/Hz ^{1/2} の宇宙空間 での実現.出力 1W.	安定度 0.5Hz/Hz ^{1/2} . 出力 10W.
ドラッグ フリー技術	全自由度制御で 1x10 ⁻⁹ m/Hz ^{1/2} の実現.	全自由度制御で 1x10 ⁻⁹ m/Hz ^{1/2} の実現. 長基線長FF 100km.	全自由度制御で 1x10 ⁻⁹ m/Hz ^{1/2} . 超基線長FF 1000km.

原始重力波シンポ (日本物理学会 2014年秋季大会, 2014年9月19日, 佐賀大学)

「「「「「」」」」

DECIGOパスファインダー (DPF)

将来の宇宙重力波望遠鏡DECIGOのための前哨衛星

1機の衛星で可能な宇宙実証をおこなう

→ DECIGOのみならず、宇宙・無重力環境 利用のための先端宇宙技術の確立.

イプシロン搭載小型ミッション としての実現を目指す.
 小型衛星1機(重量 400kg)
 地球周回軌道(高度 500km)

Earth Image: ESA

ミッション機器重量:~200kg ミッション機器空間: 95 cm立方

ドラッグフリー ローカルセンサで相対変動検出 → スラスタにフィードバック

DPFシステム概要

DPF Payload

Size : 950mm cube Weight : 220kg Power : 150W Data Rate: 800kbps Mission thruster x10

Power Supply SpW Comm.

Satellite Bus ('Standard bus' system) Size : 950x950x1100mm Weight : 230kg SAP : 960W Battery: 50AH Downlink : 2Mpbs DR: 1GByte 1N Thrusters x 4

干渉計モジュール

・無重力下での試験マス制御デモンストレーション (国立天文台) - 落下モジュール (構造, 電源, センサ,ロガーなど) - ~3m落下設備 (足場, 切り離し機構, クッションなど)

DECTGO

- ・周波数安定化モジュールBBM1 (~2011, 電通大)
 - ヨウ素セルを用いた周波数安定化.
 - 安定度要求 (0.5 Hz/Hz^{1/2})を満たす.
- ・周波数安定化モジュールBBM2 (電通大)
 - ファイバ素子を用い,小型・軽量・堅牢化.
 - SpWデジタル制御ボードによる動作.

周波数安定化モジュール

ミッションスラスタ構成

 ・ミッションスラスタ構成
 - 準定常成分 100 μNスラスタ 2台 大気ドラッグ,太陽輻射圧
 - 変動成分 10 μNスラスタ 8台 大気圧変動,太陽輻射変動

DECT

SpaceCube2: Space-qualified Computer

SWIM $\mu\nu$: User Module

CPU: HR5000 (64bit, 33MHz) System Memory: 2MB Flash Memory 4MB Burst SRAM 4MB Asynch. SRAM Data Recorder: 1GB SDRAM 1GB Flash Memory SpW: 3ch

Size: 71 x 221 x 171 Weight: 1.9 kg Power: 7W

Processor test board GW+Acc. sensor FPGA board DAC 16bit x 8 ch ADC 16bit x 4 ch → 32 ch by MPX Torsion Antenna x2 ____~47g test mass

Data Rate : 380kbps Size: 124 x 224 x 174 Weight: 3.5 kg Power: ~7W

SDS-1 Bus System

Power +28V RS422 for CMD/TLM GPS signal

Power ±15V, +5V SpW x2 for CMD/TLM

SWIMによる宇宙実証

DPFミッションの状況

JAXAのイプシロン搭載小型衛星

1号機 ひさき (SPRINT-A) (2013年)
 UV望遠鏡による惑星観測
 2号機 ERG (SPRINT-B) (~2015/16年)
 地球周辺の磁気圏観測

DPF: 小型科学衛星3号機を目指していた

ことしの公募では落選.

小型科学衛星1号機 SPRINT-A/EXCEED

Epsilon Rocket Booster Photo by JAXA

まとめ

・DECIGOは,他では得られない大きな科学的意義をもつ. 必ずいつかは実現されるはずである。

・2014年に募集のあった、イプシロン搭載小型ミッションの 選考において、前哨衛星DPFの提案は採択されなかった.

・搭載機器の開発を継続するとともに,現在,戦略の再検討 を進めている.

Earth Image: ESA

A DR. DR. DR.

JAXAのミッション計画

From file submitted to the government by ISAS/JAXA (内閣府・宇宙政策委員会・宇宙科学・探査部会 2013年9月19日).

of the same same is an average production of the same same

原始重力波シンポ (日本物理学会 2014年秋季大会, 2014年9月19日, 佐賀大学)

AND STREET, ST

KAGRA と DECIGO

KAGRA (~2017)
Ground-based Detector
→ 高周波数の重力波イベント
目標: 重力波の検出, 天文学

DECIGO (~2030) Space observatory → 低周波数の重力波 目標: 宇宙論的な知見など

・KAGRAとDECIGOの関係.

- 重力波を用いる、という手段は同じだが、違いも多い.

- * 目指すサイエンス (高エネルギー天体現象 / 宇宙論).
- * 実現時期 (2017年 / 2030年).
- * 根幹となる技術 (試験マス支持, レーザー光源, 衛星技術).
- *開発体制.
- JGWCの合意:まずKAGRAで初検出を実現し, DECIGOで展開する.

・宇宙科学分野を取り巻く状況の変化.

- JAXA 宇宙科学ロードマップの策定. 各分野の将来計画の議論. - 宇宙線分野に関係するのは、EUSO, DECIGOなど.

私見
長期的視野に立って、
宇宙線/重力波コミュニティの裾野の拡大と発展を目指すべき。

重力波研究コミュニティ ・JGWC (Japan Gravitational Wave Community): 325名

理論???名

•DPF WGメンバー: 109名 (DECIGO WG 148名)

DECIGO/DPF開発だけに

参加するメンバーも多い.

- 宇宙用干渉計開発·無重力実験
- 安定化レーザー開発
- スラスタ開発
- 衛星システム検討/ドラッグフリー

KAGRAのコアメンバー

宇宙重力波望遠鏡計画

eLISA

(Laser Interferometer Space Antenna)

- 観測対象: 超巨大BH, 連星系. 1mHz付近の確実な重力波源.
- 基線長: 100万km. S/C 3機による編隊飛行.
- 測距方式: 光トランスポンダ.

DECIGO

(Deci-hertz Interferometer Gravitational Wave Observatory)

- 観測対象: 初期宇宙・宇宙論的知見. 0.1Hz付近の重力波. 基線長: 1000km. S/C 3機による

フォーメーションフライト.

- 測距方式: FP干涉計 (直接干涉).

LPFとDPF

		LPF (LISA Pathfinder)	DPF (DECIGO Pathfinder)	
相違点	干渉計方式・感度	MZ 干渉計 (10 ⁻¹² m/Hz ^{1/2})	FP 干涉計 (6x10 ⁻¹⁶ m/Hz ^{1/2})	
	レーザー安定化	外部共振器	ヨウ素吸収線	
	投入軌道	L1	LEO 500 km	
	衛星規模	1,900 kg	400 kg	
	打ち上げ時期	2015 年	2019 年	
類似・ 共通点	位置付け	将来の大型ミッションのための技術実証		
	試験マスモジュール	静電S/A, ローンチロック, 帯電キャンセル.		
	ドラッグフリー	低雑音スラスタによる 6自由度制御.		

原始重力波シンポ (日本物理学会 2014年秋季大会, 2014年9月19日, 佐賀大学)

10,04,04,04,04,04

AND A COLORADOR OF A COLORADOR

•ESA

- LISA Pathfinderは 2015年7月に打ち上げ予定.
- NASAが手を引いたのち, ESA単独ミッションとして eLISAが 提案されていた. 腕の数, 基線長などdescopeでコスト削減.
- L3 (2034年) として重力波ミッションが選定されている. eLISA方式が有力ではあるが、必ずしもその方式に限らない.
- eLISAグループは、L3より早期の実現と,構成を元に戻すことを目指し,国際協力の可能性を模索. ~200億円規模と言っている → NASA,中国,日本.

•NASA

- NASA主導ミッションとしての重力波ミッションの可能性を模索. → 妥当な解は見つかっていない.

国際情勢 (2/3)

- eLISAへの部分参加と, 主導ミッションの両方の可能性を検討. ・中国
 - ウーハンの重力研究所を中心に急激に立ち上がりつつある.
 - eLISAへの参加, GRACE的なミッションの実現など, 多くの可 能性を模索している.

・日本

- DPF落選後の戦略検討中. DECIGOの最短での実現を目指す. 現時点では、国際協力に対しては立場を明確にしていない.

·地上重力波望遠鏡

- 米国 aLIGO: 2014.5 リビングストンの干渉計の全体動作 を実現. → 2015年に初期観測を行う. 2018年頃までに重 力波の初検出が実現される可能性は十分にある.
- 欧州 VIRGO: インストール進行中. 入射光学系の動作が実現されている.
- 日本 KAGRA: 施設整備が完了しつつある. 2014年10月から本格的なインストール開始. 2015年12月に初期観測運転.

国際情勢 (3/3)

重力波天文学のロードマップ

最古の科学の1つ

天文学・宇宙物理学は何を目指している?
・天体や天文現象、宇宙のことを調べ、理解すること。
・私たちの頭上にある月・惑星・恒星から遠くの銀河 などを対象にする。

・宇宙の誕生と成り立ちを知る. ・極限状態の物理を知る. ・地球・生命の誕生と歴史を知る.

→ 重力波観測は、これらに貢献する可能性!

本格的な天文学

第一世代の検出器 --- 近傍銀河までの観測範囲を持つ
 ただ… そのような重力波イベントは稀 (10⁻⁵-10⁻³ event/yr)

 、次世代の重力波望遠鏡

Resonant bar

国内重力波観測分野の展望

重力波コミュニティでの議論.

・国内の重力波研究分野 JGWC^(注1) でのコンセンサス: 「まずKAGRAにより重力波初検出を行い、 その後DECIGOで天文学として展開する.」 ・地上望遠鏡とは異なった観測時期、目指すサイエンス^(注2). *注1 JGWC : Japan Gravitational Wave Communityの略. *注2 観測周波数に応じて異なった

観測対象になる. 電磁波観測にお ける 電波-光赤外-X線などの関係 と同じ.

<u>KAGRA:地上重力波望遠鏡</u>.

- -目的:重力波天文学の創成.
- 主に200Mpc程度以内にある中性子連星 合体などの高エネルギー天体現象の観測.

- 建設中, 2017年本格観測開始.

DECIGO:宇宙重力波望遠鏡.

- 目的: 宇宙における物質起源への知見・宇宙論.
- 電磁波では直接観測できない初期宇宙の観測など.
- 2030年前後の実現に向け、前哨衛星DPFでの技術実証
 - → DPFをイプシロン搭載小型ミッションとして提案中.

し力波研究コミュニティ DECT •JGWC (Japan Gravitational Wave Community): 325名 理論~150名 DECIGO **O KAGRA/DECIGO** KAGRAのみ 88名 167名 60名 DECIGO 148名 KAGRA 227名 ・DPF WGメンバー: 109名 (DECIGO WG 148名) DPF WG 109名 DECIGO/DPF開発だけに

参加するメンバーも多い.

- 宇宙用干渉計開発·無重力実験
- 安定化レーザー開発
- スラスタ開発
- 衛星システム検討/ドラッグフリー

KAGRAのコアメンバー

・重力波の初検出 > 新しい天文学の創生.

- 連星中性子星:確実に存在,波形予測可能.
- ガンマ線バーストの起源, 未知の発見.
- 相対性理論/重力法則の検証.

・高密度核物質の直接探査. - 中性子星の状態方程式の情報. - r-過程 → 元素組成・宇宙の化学進化.

・宇宙論・銀河形成史に対する知見.

- 宇宙論パラメータへの制限.
- 超巨大ブラックホールの形成過程

From encyclopedia of science

原始重力波シンポ (日本物理学会 2014年秋季大会, 2014年9月19日, 佐賀大学)

連星合体観測による知見

国際観測ネットワークが形成される (現在から約5年後) → 重力波天文学 (重力波の検出,波源位置の特定,波源の物理情報,…)

第2世代 重力波望遠鏡

干渉計の指向性

干渉計型重力波検出器:指向性・偏波依存性が小さい.

☆1台の干渉計で重力波源を特定することはできない.

アニメーション: 川村静児 (ICRR)

複数台で同時観測

到着時間の差から 波源の方向が分かる!

海外望遠鏡との比較

	2 nd -generation detectors			3 rd generation
	aLIGO	Ad. VIRGO	KAGRA	ET
観測開始	~ 2016	~ 2016	~ 2017	~ 2026
ታイト	地上 Hanford 2台 Livingstone 1台	地上 Pisa 1 台	地下 Kamioka 1 台	地下 3 台
基線長	4 km	3 km	3 km	10 km
観測レンジ ^(*1)	306 Mpc	243 Mpc	273 Mpc ^(*2)	3 Gpc
干渉計方式	RSE 広帯域	RSE狭带域	RSE 可変帯域	RSE Xylophone
熱雑音の低減	大ビーム径, 低機械損失鏡 熱レンズ効果の補正		低温化	低温化
防振系	能動防振系	受動防振系	受動防振系	受動防振系

(*1) 連星中性子性合体現象に対する観測可能距離,最適方向,最適偏波, SNR>8.

(*2) 現在、設計の更新作業が進められており, 変更の可能性がある.

15サブシステム

KAGRA Organization PI: T.Kajita (ICRR), PM: Y.Saito (KEK)

自己紹介

あんどう まさき 安東 正樹 (東京大学 理学系研究科 物理学専攻 / 国立天文台 重力波プロジェクト推進室 准教授)

`<u>重力波天文学</u>'を研究.

- 滋賀県 草津市 出身.
- 高校・大学は京都.
- 大学院・PD・助教は東京で.
- 2009.1 京都大.
- 2012.6 国立天文台.
- 2013.4 東京大 / 国立天文台併任.
インフレーションからの重力波

73

初期に生成された重力波ほど,より長くインフレーションで引き延ばされ,より最近に宇宙の地平線内に入る.

初期の方が宇宙のサイズ(因果律を持つ領域)が小さい. → 初期に地平線内入ってきた重力波ほど高周波.

初期宇宙からの重力波

原始重力波シンポ (日本物理学会 2014年秋季大会, 2014年9月19日, 佐賀大学)

DEC

背景重力波探査の現状

原始重力波シンポ (日本物理学会 2014年秋季大会, 2014年9月19日, 佐賀大学)

75

捕まえるのはとても大変

76

重力波の効果:2点間の固有距離の変化

重力波検出器の種類

77

Early Universe

					Binary me	$\frac{\overline{G}M}{R^3}$		
Sources				SI	МВН І	MBH BH-BH NS-	NS-NS BH	
			Quasi-static		inary		Supernova	
			SMBH WD binary		Pulsa	Pulsar		
Wave Period	Age of the Universe		Years		Hours	Seconds	Milliseconds	
Frequency [Hz]	10 ⁻¹⁵	10 ⁻¹²	10 ⁻⁹	10 ⁻⁶	10 ⁻³	1	10 ³	
					Com #	Ground Interfe	Ground-based Interferometer	
Detectors								
	CMB B-mode	*	Pulsar timing	Dopp track	oler Spac ing inter	e ferometer	Resonant I	bar

・重力波のエネルギー密度

重力波の密度

 $\Omega_{\rm GW}(f) = \frac{1}{\rho_{\rm C}} \frac{d\rho_{\rm GW}(f)}{d\ln f} \checkmark$ < − 宇宙の臨界密度

等価な重力波スペクトル $\int \tilde{h}_{\rm GW}^2(f) = \frac{3H_0^2}{10\pi^2 f^3} \Omega_{\rm GW}(f)$

・CMBの テンソル・スカラー比

インフレーションのエネルギースケールに対応

 $V^{1/4} = 1.06 \times 10^{16} \left(\frac{r}{0.01}\right)^{1/4}$ [GeV] $r = \frac{(\text{Tensor mode energy})}{(\text{Scaler mode energy})}$

79

重力波による天文学!!!

重力波の特徴 ・質量の加速度運動から放射 ・物質に対して強い透過力

宇宙を観測する新しい手段

- ・電磁波と相補的・独立な観測
- ・電磁波などでは見ることの出来ない現象 (初期宇宙,高エネルギー天体現象の内部)

重力波で宇宙を探る

景画: NASA/WMAP Science Team

検出の試み:1960年代より行われる 2000年前後より、大型干渉計型検出器が観測を開始 レーザー干渉計型:5台,共振型検出器:3台

第1世代 重力波検出器

国際的観測ネットワーク: 1年を超える観測データ

 → 科学的成果(上限値,理論モデルへの制約など)

 連星中性子星合体イベント: 50kpc~20Mpcの観測レンジ

 → 我々の銀河,近傍銀河でイベントがあれば検出可能

原始重力波シンポ (日本物理学会 2014年秋季大会, 2014年9月19日, 佐賀大学)

DECTGO

本格的な天文学

第一世代の検出器 --- 近傍銀河までの観測範囲を持つ
 ただ… そのような重力波イベントは稀 (10⁻⁵-10⁻³ event/yr)

 、次世代の重力波望遠鏡

KAGRA (かぐら)

- 大型低温重力波望遠鏡 -

原始重力波シンポ (日本物理学会 2014年秋季大会, 2014年9月19日, 佐賀大学)

84

本格的な天文学

85

約1桁感度を向上した 第2世代の地上重力波望遠鏡

第2世代望遠鏡では、検出頻度~10 event/year

かぐら (KAGRA)

日本の大型重力波検出器 (本格観測 2017年-) 一年間に10回程度のイベント観測が期待できる.

・ホスト機関: 東京大学 宇宙線研究所 ・副ホスト機関: 国立天文台 高エネルギー加速器研究機構 ・国内外の研究機関 東京大,大阪市大,東工大, 大阪大,京都大,産業技術総 合研究所, 情報通信研究機構, 電気通信大,山梨英和大など.

⇒ 重力波天文学

・連星中性子星の合体:現在もっとも有力な重力波源.

- 電波パルサー観測により、存在が確認.
- 頻度の見積もりが可能.
- 地上重力波望遠鏡の観測周波数帯の信号.
- 波形予測が可能.
- 波形の情報から、さまざまな科学的知見.

連星中性子星の合体

連星中性子星合体からの重力波観測

観測レンジ 感度曲線 → 観測可能距離 270 Mpc (SNR 8, 最適方向・偏波) 銀河の個数密度: $\rho = 1.2 \times 10^{-2}$ [Mpc⁻³] R. K. Kopparapu et.al., ApJ. 675 1459 (2008) 銀河あたりのイベントレート: $\mathcal{R} = 118^{+174}_{-79}$ [events/Myr] V. Kalogera et.al., ApJ, 601 L179 (2004) KAGRAの観測レート 9.8 events/yr (1年間の観測での検出確率 99.9%以上)

KAGRAの観測確率

原始重力波シンポ (日本物理学会 2014年秋季大会, 2014年9月19日, 佐賀大学)

88

KAGRA サイト

岐阜県・神岡町 の地下サイトに建設

Facility of the Institute of Cosmic-Ray Research (ICRR), Univ. of Tokyo.

新跡津口:センタールーム

茂住口: Y腕トンネル

KAGRAスケジュール

•**iKAGRA** (2010.10 – 2015.12)

- 3-km FPM interferometer
- Baseline 3km room temp.
- Operation of total system with simplified IFO and VIS.

•**bKAGRA** (2016.1 – 2018.3) Operation with full config.

- Final IFO+VIS configuration
- Cryogenic operation.

原始重力波シンポ (日本物理学会 2014年秋季大会, 2014年9月19日, 佐賀大学)

Crvo-mirrors

Recycling

mirrors

インフレーションからの重力波

92

背景重力波のエネルギー密度:テンソルスカラー比(r)に比例. 重力波のスペクトル:宇宙の進化の歴史を反映.

DECIGO

光共振型マイケルソン干渉計

アーム長: 1000 km レーザーパワー: 10 W レーザー波長: 532 nm ミラー直径: 1 m

DECIGO (DECI-hertz interferometer Gravitational wave Observatory)

宇宙重力波望遠鏡 (~2030) → 他では得られない豊富なサイエンス

宇宙の成り立ちに関する知見 インフレーションの直接観測 ダークエネルギーの性質 ダークマターの探査 銀河形成に関する知見 ブラックホール連星の観測 宇宙の基本法則に関する知見

互いに1000km離れた3機のS/C 非接触保持された鏡間距離を レーザー干渉計によって精密測距

太陽公転軌道

最大4ユニットで相関をとる

DECIGOパスファインダーのコンセプト

DECIGOパスファインダー (DPF)

- DECIGOの最初の前哨衛星
- DECIGOで必要とされる主要技術のうち、 1機の衛星で可能な要素の宇宙実証.

- 基線長30cm干渉計による干渉計技術実証.
- 安定化レーザー光源の動作.
- ドラッグフリーの実現.
- 総合的・連続的な観測運用.

