小型重力波観測衛星

DECIGOパスファインダー (DPF)

― ミッション要求およびシステム要求書 ―

DECIGO パスファインダー ワーキンググループ

2014年2月

目 次

1	ミッション成功基準	1
2	ミッション要求値	1
3	想定される雑音源	2
4	レーザー干渉計による読み取り雑音	4
5	試験マスに直接作用する外力	6
	5.1 重力	6
	5.2 電磁力	9
	5.3 その他の試験マスに直接作用する力	11
6	衛星に作用する外乱	12
7	ミッション要求値・システム要求値・雑音源のまとめ	14
参	考文献	16

		ミニマムサクセス	フルサクセス	エクストラサクセス
搭載ミッション	DPF全体	レーザー干渉計,安定化 レーザー光源,ドラッグフ リーの各根幹技術を個別 に宇宙実証する.	搭載機器を総合動作させ、DECIGOのために 必要な技術のうち、「宇宙レーザー干渉計に よる精密計測」の技術を確立する.6x10 ⁽ - 16) m/√Hzの変位感度を実現し、地球1周 回(約2時間)の連続測定データを取得する.	重力波・地球重力場観測の観点 から取得されたデータの解析を 行い,科学的成果を得る.
	レーザー干渉計	ファブリ・ペロー干渉計を 安定に制御し,基線長変 動を測定する.	地球1周回(約2時間)以上の干渉計の連続安 定動作を実現. 干渉計制御系, 雑音評価, および, 校正のための測定の実施.	雑音源の評価と制御系の最適化 を行い、原理的に達成可能なレベルまで干渉計雑音を低減する.
	安定化レーザー光源	レーザー光源と安定化シ ステムの動作を実現し, 安定度を評価する.	レーザー光源を0.5Hz/√Hzの目標値まで安 定化し、地球1周回(約2時間)以上安定動作 させる.	地上で達成されていないレベル の安定度を達成する.
	ドラッグフリー	低雑音スラスタの動作を 確認し, 雑音レベルを評 価する.	試験マスと衛星の相対変動信号をミッション スラスタにフィードバックし、地球1周回(約2時 間)以上連続に10 ⁽ −9) m/√Hzの安定度でド ラッグフリー制御を実現する.	ドラッグフリー制御によって、衛星 変動を太陽輻射圧雑音レベルよ り小さいレベルにまで抑圧する.

図 1: DPF のミッション成功基準.

1 ミッション成功基準

DPFでは、「レーザー干渉計による精密計測技術」面での宇宙実証として、宇宙レーザー 干渉計、安定化レーザー光源、ドラッグフリー制御をまとめた長時間安定に総合動作を 行い、時系列連続データを取得することを目的としている.従って、周波数 0.1 Hz の変 動スペクトルを評価することと、その動作状態が長時間安定的に持続できることを確認 することが重要である.変動レベルとしては、レーザー干渉計において、0.1 Hz の周波数 帯で 2×10^{-15} Hz^{-1/2} の歪み感度 を実現することが、最上位のミッション要求値となる¹. また、長期安定動作に関しては、衛星がほぼ地球1周回するのに要する時間に相当する、 連続2時間以上の安定連続動作データを取得することを成功基準として設定する.

それに加えて,超過成功基準としては,<u>重力波観測</u>および<u>地球重力場観測</u>の観点から得られたデータの解析を行い,信号検出や上限値の更新といった科学的成果を挙げることを設定する.最低限達成すべき成功基準としては,各搭載機器が正常に動作し,初の宇宙実証という成果を挙げることを目標として設定する.

この全体成功基準は, さらに, レーザー干渉計, 安定化レーザー光源, ドラッグフリーと いう3つの主要な科学的目的に書き下される.その設定基準は, 図1にまとめられている.

2 ミッション要求値

上記の成功基準に基づき,下記のミッション要求を定める(表1).

・ レーザー干渉計において, $6 \times 10^{-16} \,\mathrm{m/Hz^{1/2}}$ の変位感度,および,試験マスへの外力雑音 $1 \times 10^{-15} \,\mathrm{N/Hz^{1/2}}$ 以下を実現する.

¹単位 $Hz^{-1/2}$ は、周波数あたりのパワースペクトル密度の平方根を取ることに由来している.逆に、このパワースペクトル密度に、周波数幅の平方根を乗算したものが、その周波数帯でのRMS (Root-Mean-Square)振幅になる.DPFの場合、0.1~1 Hz の周波数帯を観測対象としており、周波数幅は約1Hz となる.従って、各要求値の単位から $Hz^{-1/2}$ を消したものを、0.1~1 Hz 帯で要求する RMS 振幅と読み替えて考えても差し支えない.

表 1: DPF でのミッション要求値.スペクトル値では 0.1 Hz での値を示す.参考として DECIGO の要求値を括弧内にしめす.

項目	要求値	・仕様		主な根拠・制約条件
干涉計変位感度	$\leq 6 \times 10^{-16}$	(2×10^{-18})	$m/Hz^{1/2}$	干渉計歪み感度からの要求
鏡 (試験マス) への外力雑音	$\leq 1 \times 10^{-15}$	(1×10^{-17})	$ m N/Hz^{1/2}$	同上
レーザー光源周波数安定度	≤ 0.5	(0.5)	$\mathrm{Hz}/\mathrm{Hz}^{1/2}$	DECIGO 要求値
衛星並進変動	1×10^{-9}	(1×10^{-9})	$\rm m/Hz^{1/2}$	DECIGO 要求値
連続測定動作時間	≥ 120		\min	地球一周回分の連続データ取得
観測期間	≥ 1	(5)	yr	十分な観測データの蓄積

- 安定化レーザー光源において,0.5 Hz/Hz^{1/2}の周波数安定度を実現する.
- ドラッグフリー制御によって、衛星変動を 1 × 10⁻⁹ m/Hz^{1/2} 以下に抑える.
- これらを,2時間以上安定に連続動作させる.

それらに加えて,前提条件・制約条件・運用要求として以下のものを設定する

- 打ち上げ手段としてイプシロンロケットを使用することとする.打ち上げ能力,軌道 投入精度,打ち上げ時形状などが制約条件となる.
- バス部の新規開発に要するリソースを低減するため、小型科学衛星標準バス構成を最大限に活用した、地球周回軌道に投入される1機の衛星設計とする.熱・構造、搭載 重量、電力、信号処理、通信などの小型衛星インターフェース条件を守ることが制約 条件となる.
- 打ち上げ時期は 2019 年を前提条件とする².
- 運用期間は1年間以上とする.

これらの要求・条件は,各サブシステムの要求仕様に細分化されることになる.ミッション搭載機器,および,衛星システムに対する主な要求値・仕様を,表4にまとめる.DPFにおいては,精密計測の実現を目的にしているため,0.1 Hzの周波数帯での雑音特性に関しては特に詳細な検討を行う.

3 想定される雑音源

DPF に搭載されるレーザー干渉計は,2つの試験マス間の光路長の微小変動を測定するものである. ミッション目標である $6 \times 10^{-16} \text{ m/Hz}^{1/2}$ の干渉計測定感度, $1 \times 10^{-15} \text{ N/Hz}^{1/2}$ の試験マス外力雑音,0.5 Hz/Hz^{1/2}の光源周波数安定度, $1 \times 10^{-9} \text{ m/Hz}^{1/2}$ の衛星変動,といった微小変動を達成するためには,想定され得る全ての外乱の影響を考慮しておく必要がある.それらは,以下の外乱・雑音要因である.

• レーザー干渉計による読み取り雑音

²打ち上げ時期は,前提とする軌道上残留大気密度の条件に影響する.

図 2: ミッション要求値からサブシステム要求へのブレークダウン.レーザー干渉計変位感度より.

- 光の量子雑音
- 試験マスの熱振動
- レーザー光源の雑音:周波数雑音,強度雑音,ビームジッター雑音
- 試験マスに直接働く外乱
 - 重力: 天体重力, 衛星自身の重力, 地球重力
 - 電磁力:惑星間磁場,衛星自身の磁場,地球磁場,ローレンツ力
 - その他の力:残留ガス分子の衝突,宇宙線の衝突,熱輻射圧力
- 衛星に働く外乱
 - 太陽の輻射圧力
 - 地球大気との摩擦力
 - 衛星自身の振動: スラスタ, モメンタム・ホイール, 電気・電子機器

図 3: ミッション要求値からサブシステム要求へのブレークダウン.試験マスモジュール外 力雑音より.

4 レーザー干渉計による読み取り雑音

ここでは,レーザー干渉計における雑音を検討し,ミッション目標を細分化し,ミッション搭載機器に対する要求を与える.

光の量子雑音

試験マス間の距離変動を観測する干渉計では,レーザー光が光子の集まりであることに起 因する量子雑音が原理的な感度限界を決める.この量子雑音は,散射雑音と輻射圧雑音の2 つに分けて考えることができる.この2つの雑音は,不確定性関係で結ばれ,一方を低減す れば他方が悪化するという関係にある.散射雑音は,干渉計からの反射光を光検出器で検出 する際の光子数揺らぎに起因する.光子数揺らぎは,レーザー光量の平方根に比例するのに 対して,信号は,レーザー光量に比例して増加するため,雑音レベルはレーザー光量の平方 根に反比例することになる.

DPF で要求されるレーザー光量は,散射雑音から与えられる.散射雑音に起因する変位雑 音レベルは,入射光量 $P_{\rm L}$,干渉計のフィネス F,干渉計のカットオフ周波数 $f_{\rm cut}$ とすると,

$$\delta x_{\rm shot} = \frac{1}{8\mathcal{F}} \sqrt{\frac{ch\lambda}{\eta P_{\rm L}} \left[1 + \left(\frac{f}{f_{\rm cut}}\right)^2 \right]} \quad [{\rm m/Hz}^{1/2}] \tag{1}$$

図 4: ミッション要求値からサブシステム要求へのブレークダウン.ドラッグフリー制御より.

となる.ここで, η は,光検出器で光を光電流に変換する際の量子効率である.また,cは 光速,hはプランク定数, λ はレーザー光の波長である.カットオフ周波数は干渉計のフィ ネスと基線長で決まる.1機の衛星内に十分収まる長さとして,干渉計の<u>基線長 30 cm</u>と設 定すると,干渉計のカットオフ周波数 f_{cut} は,7.5 MHz と十分高くなる.従って,観測周波 数帯では,散射雑音は平坦なスペクトルを持つと考えてよい.

入手可能な光検出器の量子効率 $\eta = 0.9 \text{ A/W}$, さらに干渉計のフィネスとして容易に達成 可能な F = 100 という値を用いると,干渉計変位感度に対するミッション要求値を満たすの に必要な光量は,1.7 mW となる.レーザー光源と干渉計モジュール間の伝送経路や,干渉計 モジュール内での変調器などによる損失,強度安定化や鏡のアラインメント信号取得の光の 分岐と安全係数を考慮し,安定化レーザー光源からの出射光量への要求値は,100 mW 以上 とする.その結果,干渉計には25 mWの光量が入射されるものとして見積もる.

レーザー光の輻射圧雑音は,干渉計の鏡で光を打ち返す際の,光子数揺らぎに起因する雑 音である.雑音レベルはレーザー光量の平方根に比例することになる.その輻射圧力揺ら ぎは,

$$\delta F_{\rm rad} = \frac{8\mathcal{F}}{\pi} \sqrt{\frac{hP_{\rm L}}{c\lambda \left[1 + \left(\frac{f}{f_{\rm cut}}\right)^2\right]}} \quad [{\rm N/Hz}^{1/2}] \tag{2}$$

となる.この式に数値を代入すると、試験マスに対する外力雑音としては、 $\delta F_{\rm rad}=8.2\times10^{-17}\,[{\rm N/Hz}^{1/2}]$ 、となり、ミッション要求は十分満たしている.

熱雑音

干渉計を構成する試験マスは,有限の温度を持っているため,その熱振動が雑音になり得る.この熱雑音は,試験マスの形状や材質(ヤング率 E_0 ,ポアソン比 σ ,機械損失1/Qなど),などに依存し,

$$\delta x_{\rm ther} = \sqrt{\frac{8k_{\rm B}T_{\rm m}(1-\sigma^2)}{2\pi^{3/2}QE_0w_0f}}$$
(3)

と書くことができる.ここで, $k_{\rm B}$ はボルツマン定数, $T_{\rm m}$ は試験マスの温度, w_0 は鏡にあたる光のビーム径である.この式から,ミッション要求を満たす鏡の機械損失の逆数は $Q \ge 2 \times 10^5$ となる.これに安全係数を考慮し, $Q \ge 1 \times 10^6$ を要求値とする.

レーザー光源の周波数雑音

DPFの重力波検出器として用いられるファブリー・ペロー干渉計は,レーザー光の波長を基準に共振器の基線長変動を計測する装置である.従って,レーザー光源の波長(周波数)が変動すると,試験マスの変動と区別することができない.干渉計に入射されるレーザー光の周波数雑音 $\delta\nu$ は,

$$\delta x_{\rm freq} = \frac{\delta \nu}{\nu} L \quad [\rm m/Hz^{1/2}] \tag{4}$$

という形で干渉計変位雑音となる.DPFでは,光源から出たレーザー光を外部周波数基準に入射し,その信号をフィードバックすることで周波数安定化を行う.これまでの地上での安定化実験で実現されている安定度や,理論的な見積もりを踏まえて,DPFでは,これ自身をミッション要求値として与え, $\delta \nu = 0.5 \ [{
m Hz}/{
m Hz}^{1/2}]$ の周波数安定度としている.これより,入射レーザー光の周波数雑音の干渉計変位雑音への影響は, $\delta x_{
m freq} = 1.8 \times 10^{-16} \ [m/{
m Hz}^{1/2}]$ となる.これは,ミッション要求の約 1/3 の値である.

レーザー光源の強度雑音

レーザー光源の 0.1 Hz 帯での強度変動は,干渉計の基線長変動の RMS 変動量とカップル してレーザー干渉計に対する変位雑音となる.

$$\delta x_{\rm int} = \frac{\delta P}{P_{\rm L}} \Delta x_{\rm rms} \quad [{\rm m/Hz}^{1/2}] \tag{5}$$

ここで, δP は光源の強度, $\Delta x_{\rm rms}$ は干渉計基線長制御を行った結果の残留 RMS 変動量である. 実現性を考慮して要求値を分配し,光源の強度 $\Delta P \leq 10^{-6}$,残留 RMS 変動 $\Delta x_{\rm rms} \leq 10^{-10}$ とする.

5 試験マスに直接作用する外力

5.1 重力

天体重力場の影響

太陽・惑星などの天体の重力場は,2つの試験マスに潮汐力の効果をもたらす.これはDPF ミッションにおいて不可避であり,要求値を与えるものではないが,その影響を定量的に評 価し,問題がないことを確認しておく.ここでは,天体が試験マスから十分離れており,そ

表 2: 天体重力による試験マス間の相対加速度					
天体	質量	距離*	潮汐加速度		
	[kg]	[m]	$[m/s^2]$		
太陽	1.9891×10^{30}	1.49×10^{11}	2.4×10^{-14}		
水星	3.3021×10^{23}	$9.17 imes 10^{10}$	1.7×10^{-20}		
金星	6.0477×10^{24}	4.14×10^{10}	2.8×10^{-18}		
火星	6.4192×10^{23}	$7.83 imes 10^{10}$	$5.3 imes 10^{-20}$		
木星	1.8992×10^{27}	$6.28 imes 10^{11}$	3.1×10^{-19}		
土星	5.6866×10^{26}	1.27×10^{12}	$1.1 imes 10^{-20}$		
天王星	8.6850×10^{25}	2.72×10^{12}	$1.7 imes 10^{-22}$		
海王星	1.0247×10^{26}	4.35×10^{12}	$5.0 imes 10^{-23}$		
月	7.3483×10^{22}	3.844×10^8	5.2×10^{-14}		
* 公転半径の地球との差で見積もっている.					

の大きさが無視できる $(L/r \ll 1, r:$ 天体までの距離, L: 干渉計基線長) と近似して, その 大きさを見積もる. 干渉計を構成する鏡が天体の重力から受ける光軸方向の加速度は,

$$a_{\rm grav} = \frac{\mathbf{F}_{\rm grav} \cdot \mathbf{n}}{m} = \frac{GM_{\rm s}}{r^3} (\mathbf{r} \cdot \mathbf{n}) \tag{6}$$

である.ここで, r は, 天体から干渉計中心までのベクトル, n は, 干渉計の光軸に平行な 単位ベクトルである.従って, 2 つの鏡間の光路長方向の相対加速度は,

$$\Delta a_{\rm grav} = a_{\rm grav,1} - a_{\rm grav,2} \simeq \frac{GM_{\rm s}L}{r^3} (3\cos^2\theta - 1) \tag{7}$$

となる.式より,この潮汐力の効果は,干渉計の光軸と,天体の位置ベクトルのなす角 θ の関数で表されることが分かる.この値が最大になるのは,光軸上に天体があるとき ($\theta = 0$)で,

$$\Delta a_{\rm grav} = \frac{2GM_{\rm s}L}{r^3} \tag{8}$$

となる³.太陽系の主な天体に対してこの影響を見積もったものを表 2 にまとめる.太陽と 月 (それぞれ $2.4 \times 10^{-14} \text{ m/s}^2$, $5.1 \times 10^{-14} \text{ m/s}^2$)の影響が大きいことが分かる.この計算 値は、準静的な潮汐加速度である.実際は、衛星が地球指向姿勢をとるため、周回周期(約 100分)で加速度が周期的に変動することになる.しかし、DPF がターゲットとしている 0.1-1 Hz の周波数帯より十分低い周波数であるため、直接の雑音源とはならない.また、こ の相対加速度は、試験マスモジュールのアクチュエータのレンジ ($10\mu N$)内に十分に収まっ ており、試験マス制御にも影響は無い.

地球重力場の影響

衛星軌道高度と比べて,地球の大きさと地球ジオイド形状の影響は無視できない.そこで, 地球重力場の観測値 [65] を元に,その影響を見積もる.単位質量あたりの値に規格化された 地球重力ポテンシャル U 内で運動する試験マスが受ける重力加速度は, $g_{\text{earth}} = -\nabla U$ となる.ここで,ここで,重力加速度が基線長に比べて十分緩やかに変動すると仮定し,変動の 1 次の効果まで考慮すると,地球重力場によって 2 つの試験マスが受ける相対加速度は,

$$\Delta a_{\text{earth}} = g'L,\tag{9}$$

³天体が光軸に対して垂直な面内にあるとき,潮汐力の効果は逆符号になり,基線長を縮める向きの加速度となる.また, $\cos \theta = \pm 1/\sqrt{3}$ のとき,この潮汐力の効果は0になる.

図 5: 地球重力場による試験マス間の相対加速度スペクトル.

となる.ここで, $g' = \partial g / \partial x$ は,光軸方向の重力加速度勾配を表す.人工衛星が軌道上を 運動するとき,この相対加速度が時間変化することになる.

地球重力ポテンシャルのモデルとしては,2002年に打ち上げられた重力観測衛星 GRACE (Gravity Recovery and Climate Experiment)の観測結果を利用し,球面調和関数の2190次の項までを考慮した.図5は,人工衛星が高度500kmの極軌道を運動する時の試験マス間相対加速度スペクトルを計算した結果である.低周波数では,軌道周期に対応する周波数に,地球重力場 J_2 項に起因するピークがあり,試験マスアクチュエータはこの相対加速度を打ち消すことができるよう,1mHzより低い低周波数で1 μ N以上の力を出せることが要求される.一方,地球重力場は,0.1Hzの周波数帯での変動には影響ないことが分かる.

衛星重力場の影響

衛星自身が作る重力場変動も干渉計雑音となり得る.厳密に計算するためには,衛星の 重力分布を元に積分計算を行う必要があるが,ここでは,天体重力場と同様の近似(重力源 が質点という近似)を用いて見積りを行う.このとき,干渉計が受ける定常的な潮汐加速度 は,式(8)と同様になる.この潮汐加速度は,試験マスモジュールに取り付けられたアクチュ エータで発生できるものより十分小さくなくてはならない.アクチュエータレンジを $10 \, \mu \mathrm{N}$ とすると, $\Delta M_{\mathrm{s}}/r^3 < 1.2 \times 10^5 \, \mathrm{kg/m^3}$ となる.1m離れた場所に $120 \, \mathrm{ton}$ より大きな質量が あってはいけない,ということであり,問題にはならない.

一方,天体の場合とは異なり,衛星と干渉計間の距離rは,さほど大きくはないため,衛 星の変動が重力を介して観測周波数帯での試験マスの外乱として現れる可能性はある.この 影響は,衛星変動の1次の効果まで考慮すると,

$$\delta a_{\rm grav, \ sc} = \frac{\partial (\Delta a_{\rm grav})}{\partial r} \cdot \delta x_{\rm sc} \equiv K_{\rm gg} \cdot \delta x_{\rm sc}$$
(10)

と書くことができる.ここで, δx_{sc} は衛星の変動, K_{gg} は,衛星変動と干渉計変動のカップリング係数で,

$$K_{\rm gg} = \frac{6G\Delta M_{\rm s}L}{r^4} \quad [1/{\rm s}^2] \tag{11}$$

表 3: 試験マス付近の磁場の大きさ					
${\rm B}~[{\rm T}] \qquad B'~[{\rm T/m}] \qquad \delta B~[{\rm T/H}]$					
人工衛星による磁場	8×10^{-7}	3×10^{-6}	1×10^{-7}		
地球磁場	4.6×10^{-5}	4.5×10^{-12}	$3 \times 10^{-11} \times \left(\frac{0.1 \mathrm{Hz}}{f}\right)^{1.2}$		
惑星間磁場	3×10^{-8}		$3 \times 10^{-10} \times \left(\frac{0.1 \mathrm{Hz}}{f}\right)$		

となる. 質量 $m_{\rm p} = 2 \, {
m kg}$ の試験マスに加わる外力雑音 $10^{-15} \, {
m N/Hz^{1/2}}$ を満たすために,衛 星変動として, $\delta x_{
m sc} \leq 10^{-9} \, {
m m/Hz^{1/2}}$,カップリング係数 $K_{
m gg} \leq 10^{-6} \, {
m s}^{-2}$ を要求値とする. このカップリング係数への要求値は $\Delta M_{
m s}/r^4 \leq 8.3 \times 10^3 \, {
m kg/m^3}$ とも書き換えられ,干渉計中心から $30 \, {
m cm}$ 離れた場所に換算すると,質量非対称性は $67 \, {
m kg}$ 以下でなければならない,という要求値に相当する 4 .

5.2 電磁力

磁力による外乱

磁場があると,小さいながらも試験マスが磁化される.これが外部磁場変動とカップルして,試験マスへの外乱となり得る.試験マス付近の磁場(磁束密度)が,一様成分(B[T]),磁場勾配成分(B'[T/m]),磁場変動(δB [T/Hz^{1/2}])の重ね合わせて書くことができるとする.このとき,試験マスが受ける力の雑音は,

$$\delta F_{\rm mag} = \frac{\chi_{\rm m} V_{\rm p}}{\mu_0} B' \delta B \quad [{\rm N/Hz}^{1/2}]$$
(12)

となる.ここで, $V_{\rm p}$, $\chi_{\rm m}$ は,それぞれ,試験マスの体積と磁化率を表す.この式から,外乱は,磁場勾配と磁場変動がカップルして現れることが分かる.2つの試験マスが同じ力を受ければ,相対加速度には,この雑音の影響は現れない.ただ,磁場や試験マスの物性の非対称性の影響で,ある程度はキャンセルされずに残ることは見込まれる.その同相雑音の残存比を $\epsilon_{\rm mag}$ とする.このとき,試験マスが受ける相対加速度雑音は,

$$\delta a_{\rm mag} = \frac{\epsilon_{\rm mag} \chi_{\rm m}}{\mu_0 \rho_{\rm p}} B' \delta B \quad [{\rm m/s^2/Hz^{1/2}}]$$
(13)

となる.ここで, $\rho_{\rm p}$ は試験マスの密度を表す.

同相雑音除去の効果を $\epsilon_{mag} = 0.1$, 試験マス密度 $\rho_{p} = 2.2 \times 10^{3} \text{ kg/m}^{3}$, 磁化率 $\chi_{m} = 1.37 \times 10^{-5}$ と設定すると, この磁場カップリングよる外力雑音が, DPF ミッション要求値を満たさなくてはいけないという要請から,磁場勾配 $\underline{B' \leq 3 \times 10^{-6} [\text{T/m}]}$, 磁場変動 $\delta B \leq 1 \times 10^{-7} [\text{T/Hz}^{1/2}]$ という要求値が与えられる.このとき,安全係数は3程度である.磁場変動の値として与えている $10^{-7} \text{ T/Hz}^{1/2}$ という値は, 25 cmの距離で $1 \text{ A/Hz}^{1/2}$ の電流変動が起きていることに相当する.実際は,電流が流れる配線はリターン電流線と対にして配線するため,磁場変動は大幅に低減できることが期待できる.

⁴ここでは,1つの質点による効果だけを考えている.複数の質点の重ね合わせ(もしくは,衛星質量分布の 積分)では,この潮汐力の効果をキャンセルするよう配慮した設計にすることもできる.

衛星自身の磁場だけでなく、地球磁場、惑星間磁場の影響も評価しておく.表3は、試験マ ス付近の磁場の大きさをそれぞれの発生源に対して見積もったものである.人工衛星内磁場 と惑星間磁場に関しては、文献[63]を参照した⁵.地球の磁場の影響に関しては、IGRF-10 モデル⁶を用いて、地磁気を計算することで評価した.地磁気変動成分に関して、衛星が地 磁気内を移動することによる変動と、地磁気自身の変動の双方を考慮した結果を図6に示 す、衛星の移動による変動は、衛星が極軌道を周回するとしてスペクトルを求めている.一 方、地磁気自身の変動スペクトルは、国土地理院・江刺地磁気観測所[66]で観測されたデー タを元にしている.この観測データから求めた変動スペクトルを全磁束で規格化した相対変 動スペクトルを求め、それに高度500km での全磁束を掛けることで求めている.ただ、こ の観測データは、1分毎の観測値として提供されているため、DPFがターゲットとしている 0.1-1 Hz での変動スペクトル値を直接求めることはできない.そこで、スペクトルを外挿す ることで推定している.上記の結果より、磁場勾配成分・磁場変動成分の双方とも、地磁気 や惑星間磁場の影響は衛星自身が作る磁場よりも十分小さいことが分かる.

ローレンツカ

試験マスは,衛星内に非接触に保持されているため,宇宙線の衝突によって試験マスは帯 電していく.従って,地磁気内の運動とカップルして,試験マスはローレンツ力を受けるこ とになる.試験マスが持つ電荷量を q0 とするとき,ローレンツ力は,

$$F_{\rm Lor} = q_0 \cdot v_{\rm sc} \cdot B_{\rm geomag} \quad [N] \tag{14}$$

となる.試験マスが持つ最大電荷量として $q_0 = 10^{-13}$ [C] とすると,この定常的なローレンツ力は $F_{\text{Lorentz}} = 3.5 \times 10^{-14}$ [N] となる.これは,十分に試験マスアクチュエータのレンジ内に入っている.

電荷量・運動速度・地磁気のいずれかが変動するとき,は外力雑音を受ける.ただ,この 力は運動方向と垂直な向きに働くため,干渉計の光軸と衛星の運動方向が完全に一致して いる場合には,干渉計の雑音にはならない.また,2つの試験マスで同じ変動をした場合に も,干渉計の雑音とはならない.衛星の進行方向と干渉計光軸のずれや,2つの試験マスで の同相雑音除去を $\epsilon_{\text{Lorentz}}$ という係数に含めて考えると,ローレンツ力による相対力雑音の 影響は,

$$\delta F_{\rm Lor} = \epsilon_{\rm Lor} (\delta q_0 \cdot v_{\rm sc} \cdot B_{\rm geomag} + q_0 \cdot \delta v_{\rm sc} \cdot B_{\rm geomag} + q_0 \cdot v_{\rm sc} \cdot \delta B_{\rm geomag}) \quad [{\rm N}/{\rm Hz}^{1/2}] \quad (15)$$

となる.この第1項は,試験マスの電荷変動に起因するローレンツ力変化を表す.宇宙線の 衝突頻度を $n_{\rm pr} = 30$ [/s] とし,1回の衝突あたり素電荷 e を受けるとすると,電荷変動は $\delta q_0 = 8.8 \times 10^{-19}$ [C/Hz^{1/2}] と小さな値になる.第3項の地磁気変動に起因する効果も十分 小さく,式(15)の3つの項の中では,第2項の衛星運動速度変動が主になると考えられる. 衛星運動速度変化を1%程度,カップリング係数 $\epsilon_{\rm Lor} = 0.1$ と見積るとすると,試験マスが 持つ最大電荷量の要求値として, $q_0 \le 2.8 \times 10^{-12}$ [C] という値になる.安全係数を考慮し, 試験マスの帯電に対する要求値は $q_0 \le 10^{-13}$ [C] とする.

 $^{^5}$ 衛星内磁場に関しては,双極子モーメント $M_{\rm s}$ が,距離
 rだけ離れて配置されているときの磁束密度は,
 $B=2\mu_0M_{\rm s}/4\pi r^3$ [T] と書くことができる.姿勢制御用の磁気トルカを想定し,双極子モーメント 6 A·m²の双極子モーメントが,40 cm
の距離だけ離れて配置されているときの磁束密度は,2 × 10⁻⁵ T

程度になる.これを1/25 程度に抑えるよう,双極子モーメントの分布や向きなどの配置を工夫することが要求される.一方,惑星間磁場の値は,Ulysses 衛星の観測結果を元にしている.

⁶国際標準地球磁場 (IGRF, International Geomagnetic Reference Field) の第 10 世代モデルのこと.2005 年にアップデートされた.球面調和関数の 13 次まで定められている.

図 6: 地磁気変動スペクトル.衛星が地磁気内を移動することによる変動と,地磁気自身の 変動の双方を考慮している.

5.3 その他の試験マスに直接作用する力

残留気体分子の衝突

試験マス周囲に残留気体分子があると,分子のランダムな衝突によって試験マスが外力を受ける.試験マスの鏡面(光軸に垂直な面)が気体分子から受ける力は, $F = a_{\min}P = fw$ と書くことができる.ここで,fは1つ分子から受ける力であり,wは単位時間当たりの衝突分子数である.衝突分子数がポアソン分布に従っているとすると,衝突分子数揺らぎは \sqrt{w} となる.従って,この微小平面が受ける揺動力は,

$$\delta F = f\sqrt{w} = \frac{a_{\rm mir}P}{\sqrt{w}} \quad [{\rm N/Hz}^{1/2}] \tag{16}$$

の白色雑音となる.ここで,衝突分子数は,平均分子密度 \bar{n} と分子の平均速度 $v_{\rm rms}$ を用いて, $w = \bar{n}a_{\rm mir}v_{\rm rms}/6$ と書くことができる.理想気体の分子運動論より,気体の圧力は, $P = \bar{n}k_{\rm B}T$ と書くことができ,平均分子数密度は,

$$\bar{n} = P/k_{\rm B}T\tag{17}$$

となる.また,温度と分子の運動エネルギーの関係式より,平均速度は,

$$v_{\rm rms} = \sqrt{3k_{\rm B}T/m_{\rm m}} \tag{18}$$

となる.ここで, mm は分子質量である.以上より, 試験マスが受ける変動力は,

$$\delta F = (2a_{\rm mir}P)^{1/2} \left(3k_{\rm B}Tm_{\rm m}\right)^{1/4} \tag{19}$$

となる.試験マスの反対面にも同じ大きさで無相関な変動力が加わるとすると,

$$\delta F_{\rm gas} = 2(a_{\rm mir}P)^{1/2} \left(3k_{\rm B}Tm_{\rm m}\right)^{1/4} \quad [{\rm N/Hz}^{1/2}] \tag{20}$$

の加速度雑音が試験マスに加わることになる.残留気体として窒素分子を仮定すると,試験マスへの外力雑音ミッション要求を満たすためには,試験マス周囲の残留ガス気圧は, $P \le 1.2 \times 10^{-6}$ Pa であることが要求される.

宇宙放射線の衝突

静止質量 $m_{\rm pr}$,速度を vの粒子が、単位時間当たり $n_{\rm pr}$ 個衝突するするとき、その衝突数 揺らぎによって試験マスが受ける外力は、

$$\delta f_{\rm CR} = \sqrt{n_{\rm pr}} m_{\rm pr} v \quad [N/{\rm Hz}^{1/2}] \tag{21}$$

と書くことができる.ここで,衝突する宇宙線粒子のエネルギーを $E_{\rm d}$ とすると,その運動 速度は, $v = \sqrt{2E_{\rm d}/m_{
m pr}}$ となる.従って,宇宙放射線の衝突による外力は

$$F_{\rm CR} = \sqrt{2n_{\rm pr}m_{\rm pr}E_{\rm d}} \quad [{\rm N/Hz}^{1/2}] \tag{22}$$

となる.ここで、衝突粒子として陽子を考え、 $E_{\rm d}=3.2\times10^{-11}\,[{
m J}]\,(200\,{
m MeV})$ 、衝突頻度 $n_{
m pr}=30\,/{
m s}$ とし、さらに2つの試験マスに独立な変動が加わるとすると、 $F_{
m CR}=3.6\times10^{-18}\,[{
m N/Hz^{1/2}}]$ となる.これはミッション要求を十分に満たしている.

熱輻射

試験マスハウジングの温度に変動があると、その熱輻射圧変動が試験マスに対する雑音となり得る.熱輻射圧変動 δW_{Trad} は、温度変動 δT_{d} を用いて、 $\delta W_{\text{Trad}} = 4\sigma T_{\text{p}}^{3} \delta T_{\text{d}} [W/m^{2}/\text{Hz}^{1/2}]$ と書くことができる.試験マスの、光軸に垂直な、前後2つの面に対して、同じ輻射圧変動があっても、雑音にはならない.また、2つの試験マスが同様に動いた場合にも、雑音の影響はキャンセルされる.この変動除去の係数を ϵ_{Trad} とすると、試験マスが受ける相対外力雑音は、

$$\delta F_{\text{Trad}} = \frac{4\epsilon_{\text{Trad}}\sigma T_{\text{p}}^{3}a_{\text{mir}}}{c}\delta T_{\text{d}} \quad [\text{N/Hz}^{1/2}]$$
(23)

となる. 試験マス外力雑音への要求値に対して安全係数3をとり, 同相雑音除去係数を
 $\epsilon_{\rm Trad}=10^{-3}$ を仮定したとき,温度変動量として $0.1\,{\rm Hz}$ で
 $\delta T_{\rm d}\leq 10^{-3}\,[{\rm K}/{\rm Hz}^{1/2}]^7$ が要求値となる.

6 衛星に作用する外乱

衛星-試験マスのカップリング

DPF では,試験マスは衛星内で非接触保持されているため,衛星の変動が直接に重力波 検出器の雑音になることは無い.ただ,重力や磁力などを介して観測周波数帯での試験マス の外乱として現れることが無いよう,十分な配慮は必要である.この影響は,衛星変動の1 次の効果まで考慮すると,

$$\delta a = K \cdot \delta x_{\rm sc} \tag{24}$$

と書くことができる.ここで,Kは,衛星変動と干渉計変動のカップリング係数であり,例 えば衛星重力場のとのカップリングは,式(11)に示されている.衛星重量分布や電磁場分 布が干渉計に対して対象に配置されている理想的な場合には,この1次のカップリング係

⁷周波数依存性としては,太陽輻射圧変動のスペクトルと同様に周波数の1/3乗で減少していくものとする.

数は0にすることができ,2次以上の高次の効果が支配的になる.LISA グループ内の評価 [63] では,重力以外で大きなカップリングの原因となるのは,試験マス用の静電型トランス デューサ/アクチュエータの効果であり,

$$K_{\rm s} \sim 5 \times 10^{-9} \, [{\rm s}^{-2}]$$
 (25)

であると見積もられている.一方,実際の実験では,

$$K_{\rm s,\,ex} \sim 4 \times 10^{-7} \, [{\rm s}^{-2}]$$
 (26)

程度あるという測定結果が報告されている.見積もりよりも大きなカップリング係数になっているのは,これは極板表面の微小領域磁場 (Patch Field) による極板磁場の非一様性,もしくは,変動の2次の効果のためと考えられている.それらを考慮し,DPF における要求値は, $K \leq 10^{-6}$ [s⁻²] とする.

衛星のドラッグフリー制御

衛星と試験マスとの相対変動は、ローカルセンサによって検出され、衛星に取り付けられたスラスタにフィードバックされる、衛星が受ける太陽輻射圧や大気摩擦等に起因する低周波数帯のドリフト、また太陽輻射圧変動や衛星スラスタなどの観測周波数帯での衛星変動は、この制御系の制御ゲインによって抑えられることになる、制御によって抑えきれない衛星の変動 (δX_{sc}) は、重力などを介して、試験マスの位置に対する雑音となる、ドラッグフリー制御による衛星変動の抑圧まで考慮すると、干渉計外力雑音は、衛星に加わる力の雑音と

$$\delta F = \frac{K}{G_{\rm DF}\omega^2} \frac{m_{\rm p}}{M_{\rm sc}} \delta F_{\rm sc} \quad [\rm N/Hz^{1/2}]$$
(27)

という関係で結ばれることになる.ドラッグフリー制御ゲインが無限大であれば,衛星に加わる外力の影響は完全に抑圧することが原理的にはできる.しかし,実際は,スラスタの応答や信号処理系の制約,衛星構体の共振などによって制御ゲインや制御帯域が,制限される. 衛星やスラスタの応答速度を考慮し,DPFでのドラッグフリー制御の帯域は,10 Hz 以L, 0.1 Hz での制御ゲインは $G_{\text{DF}} \ge 40$ を要求値とする.

太陽の輻射圧

衛星が受ける外乱として,太陽からの輻射圧の影響を評価する.太陽の輻射圧の大きさが, $W_0 = 1360 \,\mathrm{W/m^2}$ [63],衛星の表面積が $A_{\mathrm{sc}} = 2 \,\mathrm{m^2}$ のとき,太陽輻射圧によって衛星が受ける力は,

$$F_{\rm sun} = \frac{W_0 A_{\rm sc}}{c} \sim 20 \ \mu \text{N} \tag{28}$$

となる.この定常成分をキャンセルする必要があることから,ミッション部スラスタ推力に 対しては 100 µN 以上の最大推力が要求される.また,輻射圧変動による雑音力は,

$$\delta F_{\rm sun} = \frac{\delta W_0 A_{\rm sc}}{c} \sim 5.0 \times 10^{-9} \text{ N/Hz}^{1/2} \quad (\text{at } 0.1 \text{ Hz})$$
(29)

となる.式 (27)より,太陽輻射圧による影響は,干渉計の外力雑音では,0.1 Hz で $\delta a_{sun_rad} = 1.8 \times 10^{-17} [N/Hz^{1/2}]$ となる.これは,要求値を十分に満たしている.

地球大気の摩擦力

地球大気の抵抗によって衛星が受ける摩擦力は,

$$D_{\rm atom} = \frac{1}{2} \rho c_{\rm d} A_{\rm sc} v_{\rm sc}^2 \tag{30}$$

で表される.ここで, $c_{\rm d}$ は,衛星の大気抵抗係数で,衛星ミッションでは2.2という値が用いられている.地球大気圧は,太陽活動や緯度・経度によっても異なるが,高度500kmでは, $10^{-7} - 10^{-9}$ Pa 程度と見込まれている.ここでは, 10^{-7} Pa として見積もると,大気密度は $\rho \sim 1.2 \times 10^{-12}$ kg/m²となる.これらの値より,地球大気による摩擦力は, $D_{\rm atom} = 74 \times 10^{-6}$ [N] と見積もることができる⁸.これを打ち消すためのミッションスラスタの最大推力として, 100μ N 以上が要求される.

衛星自身の雑音

衛星にはさまざまな機器が搭載されており、それらの振動が衛星自身の変動として現れる. そこで、DPFでは、モーメンタム・ホイールや、リングレーザージャイロなどの機械的な振動を発生する機器は搭載しない設計になっている.その他、太陽電池パドルの振動や、スラスタ用燃料の揺動など、十分に配慮した設計が要求されている.ドラッグフリーに使用するスラスタに対しては、0.1 Hz での推力雑音 $\delta F_{\rm thruster} \leq 10^{-7}\,{\rm N/Hz^{1/2}}$ を要求値としている.この値は、ドラッグフリー制御によって抑圧された結果、衛星の振動を太陽の輻射圧雑音よりも安定なレベルに抑える、という要請から定められている.

7 ミッション要求値・システム要求値・雑音源のまとめ

ここまで示してきた各種雑音の評価に加え,長時間安定動作の実現からの要求もふくめた DPF ミッション要求値・システム要求値を表4にまとめる.また,これたのパラメータを 元に,外乱・雑音を評価した結果を表5にまとめる(計算に用いたパラメータ類は,表6,7 参照).試験マスや衛星に加わる静的な力の大きさの値は,制御アクチュエータのレンジ設 計の際に必要な情報となる.それに対して,変位雑音(δx)と加速度雑音(δa)は,観測周波 数帯での重力波に対する感度を制限する要因となる.重力波・地球重力場観測時における, 変位雑音・加速度雑音の影響は,歪み感度として一緒に考えることができる.それらは,

$$\delta h_{\rm disp-noise} = \frac{2\delta x}{L}, \quad \delta h_{\rm acc-noise} = \frac{\delta a}{(2\pi f)^2 L} \quad [1/{\rm Hz}^{1/2}]$$
(31)

で換算することができる.ここで,L = 0.3 [m] は干渉計の基線長,f は注目している周波数を表す.外力雑音は,主に残留気体分子の衝突,地球重力場,衛星磁場,ハウジングの熱輻射の寄与を受けており,合計で, $\delta a_{tot} = 1 \times 10^{-15}$ [N/Hz^{1/2}] 程度になる.干渉計での検出の際の変位雑音としては,入射レーザー光の周波数雑音が主になっている.これらの雑音の影響を図7に示す⁹.

⁸軌道上の大気圧差の影響による摩擦力揺らぎに関しても見積もる必要がある.

 $^{^{9}}$ 加速度雑音では,安全係数を含めて $\delta a_{tot} = 3 \times 10^{-15} [m/s^2/Hz^{1/2}]$ の線を描いている.また,この文書での見積もりでは,衛星と試験マスの相対距離変化を測定するためのローカルセンサや試験マスの制御に用いるアクチュエータによる雑音の影響は含まれていない.

項目	要求値・仕様		主な制約条件
 レーザー干渉計			
干涉計変位感度	$\leq 6 \times 10^{-16}$	$ m m/Hz^{1/2}$	干渉計歪み感度
温度変動	< 1	$m' K/Hz^{1/2}$	執輻射雑音、執変形による外力
直空度	$< 10^{-6}$	Pa	残留気体分子の衝突維音
~ 二〇	$< 1 \times 10^{-7}$	$T/H_{7}^{1/2}$	磁力による試験マスへの外力
磁场交勤	$\leq 1 \times 10$ $\leq 3 \times 10^{-6}$	T/m	
試験マスモジュール	$\leq 0 \times 10$	1/111	
	$< 1 \times 10^{-15}$	$N/Hz^{1/2}$	王诜計李み咸度
	$\leq 1 \times 10^{-10}$	$m/Hz^{1/2}$	ーが可止の心及 亜ボドラッグフリー特度の実現
ロカルビノリぶ及	$\leq 1 \times 10^{-15}$	$M/Hz^{1/2}$	
アクチュエーク 社白	$\leq 1 \times 10$	N/11Z	山駅マヘア乱安水より
アクテュエータレノン 毎日 試験ファのカップリング	≥ 10	μ_{1N}	次日本動にトス体会
倒生-武駅マスのカッフリンク	$\leq 1 \times 10$	/S	倒生受勤による維白 サレビ味に動からの促業
	≥ 300	IN	打工り時派動からの休護
レーリー元源	> 100		工业計数計算会からの再建
山刀	≥ 100	m vv	十沙計取別毎日からの安請
波 技 国油教空空度	1030	nm	女正な元源の夫現住
周波 数女正度 治安中中安	≤ 0.5	Hz/Hz^{-7}	十渉計の変位感度要求より
	$\leq 1 \times 10^{-6}$	/Hz ^{1/2}	同上
ドラッグフリー制御			
制御ケイン	≥ 40	$(0.1\mathrm{Hz})$	太陽輻射圧変動以トへの衛星制御
人フスタ			
推刀	0 - 100	μN (建続可发)	太陽輻射圧、大気抵抗の打ち消し
スラスタ雑音	≤ 100	$\mu N/Hz^{1/2}$	太陽輻射圧変動以下への衛星制御
応答速度	≥ 10	Hz	ドラッグフリー制御帯域の確保
総インパルス	$\geq 10^4$	$N \cdot s$	半年以上の連続観測
衛星			
並進変動	1×10^{-9}	$\rm m/Hz^{1/2}$	試験マスへの外力雑音を抑えるため
姿勢変動	3×10^{-8}	$rad/Hz^{1/2}$	同上
衛星-試験マス 相対 RMS 変動	≤ 0.1	mm	センサの線形範囲に収まること
姿勢の DC-低周波数変動	1.2	\deg	同上, (地球指向姿勢)
衛星重量非対称性	6	$\rm kg/m$	重力勾配による試験マスカップリング
観測・データ取得・ダウンリンク		· ·	
運用期間	≥ 1	yr	十分な測定データの蓄積
連続測定動作時間	≥ 120	min	地球一周回分の連続データ取得
サンプリング周波数	≥ 10	Hz	重力波信号の記録に十分な速度
観測データレート	800	kbps	観測信号・モニタ信号の総計
ダウンリンクレート	2	Mbps	
データ記録容量	2	GByte	1 日分のデータ保持 (1/5 に圧縮)
		-	
軌道高度	500	km	大気抵抗,打ち上げ能力の範囲で最大
軌道投入精度	± 10	km	ロケットの投入精度
軌道離心率	$< 1.4 \times 10^{-3}$		地球重力場による加速度雑音

表 4: DPF でのミッション要求値 (太字),およびシステム要求値.

(スペクトル値では 0.1 Hz での値を示す.)

図 7: DPF における各種雑音の影響.黒実線が,DPF の感度見積もりを表す.量子雑音・熱 雑音といった原理的な感度限界は,加速度雑音・レーザー周波数雑音レベルより 1/30 程度 低いレベルにある.

参考文献

- N. Seto, S. Kawamura, T. Nakamura T, "Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space", Phys. Rev. Lett. 87 (2001) 221103.
- [2] S. Kawamura, T. Nakamura, M. Ando et al., "The Japanese space gravitational wave antenna - DECIGO", Class. Quantum Grav. 23 (2006) S125.
- [3] 中村卓史, 三尾典克, 大橋正健 編"重力波をとらえる"(京都大学学術出版会, 1998); 坪野公夫 "時空のさざ波"(丸善, 1986).
- [4] "LISA Laser Interferometer Space Antenna: A cornerstone Mission for the Observation of Gravitational Waves", System and Technology Study Report, ESA-SCI (2000) 11.
- [5] LISA Pathfinder Web Page, http://sci.esa.int/science-e/www/area/index.cfm?fareaid=40
- [6] A. Abramovici, et al., "LIGO The Laser-Interferometer-Gravitational-Wave-Observatory", Science 256 (1992) 325.
- [7] The VIRGO collaboration, "VIRGO Final Design Report", VIR-TRE-1000-13, (1997).
- [8] K. Danzmann, et al., "Proposal for a 600m Laser-Interferometric Gravitational Wave Antenna", Max-Planck-Institut f
 ür Quantenoptik Report 190, (1994).

外乱・雑音	音要因	力の大きさ	鏡の相対加速度	試験マス外力雑音	干涉計変位雑音
		[N]	$[m/s^2]$	$[N/Hz^{1/2}]$	$[\mathrm{m/Hz^{1/2}}]$
試験マスに	こ直接働く外乱				
重力	太陽	$6.0 imes 10^{-3}$	2.4×10^{-14}		
J	月	$3.3 imes 10^{-5}$	5.2×10^{-14}		
í	衛星	$1.5 imes 10^{-9}$	$3.0 imes 10^{-9}$		
t	地球	7.8	1.0×10^{-7}	1.0×10^{-18}	
電磁力 彳	衛星磁場	1.2×10^{-14}		1.5×10^{-16}	
I	ローレンツ力	3.5×10^{-14}		6.9×10^{-18}	
その他 引	残留気体分子			8.6×10^{-16}	
3	宇宙線の衝突	1.1×10^{-17}		1.8×10^{-18}	
	熱輻射			1.5×10^{-16}	
衛星に働く	く外乱				
7	太陽輻射圧	2×10^{-5}		8.9×10^{-19}	
t	地球大気の摩擦	7×10^{-6}			
í	衛星スラスタ	1×10^{-4}		6.3×10^{-17}	
干渉計の쏾	推音				
ŧ	散射雑音				2.7×10^{-18}
	レーザー輻射圧	5×10^{-8}		8.2×10^{-17}	
4 1	鏡の熱雑音				2.0×10^{-17}
	光源周波数雑音				1.8×10^{-16}
	計 (2 乗和の平符	亍根)		9.4×10^{-16}	1.8×10^{-16}

表 5: DPF 重力波検出器の主な外乱・雑音の評価.力の大きさ・鏡の相対加速度は,静的な 値を表す.干渉計に対する加速度雑音と変位雑音は,0.1 Hz での値を記載している.

- [9] K. Tsubono, in Gravitational Wave Experiments, edited by E. Coccia, G. Pizzella, and F. Ronga, (World Scientific, 1995), p. 112-114; K. Kuroda et al., in Gravitational Waves: Sources and Detectors, Edited by I. Ciufolini and F. Fidecaro, (World Scientific, 1997), p. 100-107; M. Ando, K. Arai, R. Takahashi, et al., "Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy", Physical Review Letters 86 (2001) 3950.
- [10] Champ mission Web Page, http://op.gfz-potsdam.de/champ/index_CHAMP.html
- [11] GRACE mission Web Page, http://www.csr.utexas.edu/grace
- [12] GOCE mission Web Page, http://www.esa.int/esaLP/LPgoce.html
- [13] 津田,科振費研究「精密衛星測位による地球環境監視技術の開発」報告書.
- [14] F. Bondu, P. Fritschel, C.N. Man, and A. Brillet, "Ultrahigh-spectral-purity laser for the VIRGO experiment", Opt. Lett. 21 (1996) 582.
- [15] B.C. Young, F.C. Cruz, W.M. Itano, and J.C. Bergquist, "Visible Lasers with Subhertz Linewidths", Phys. Rev. Lett. 82 (1999) 3799.

項目	値	単位
真空中の光速	$c = 2.99792458 \times 10^8$	m/s
重力定数	$G = 6.6742 \times 10^{-11}$	$\rm Nm^2/kg^2$
真空の誘電率	$\epsilon_0 = 8.8542 \times 10^{-12}$	F/m
真空の透磁率	$\mu_0 = 1.2566 \times 10^{-6}$	N/A^2
プランク定数	$h = 6.6261 \times 10^{-34}$	Js
素電荷	$e = 1.6022 \times 10^{-19}$	С
ボルツマン定数	$k_{\rm B} = 1.3807 \times 10^{-23}$	J/K
ステファン-ボルツマン定数	$\sigma = 5.6704 \times 10^{-8}$	$W/m^2/K^4$
陽子質量	$m_{\rm pr} = 1.7 \times 10^{-27}$	kg
天文単位	$1 \text{ AU} = 1.5 \times 10^{11}$	m
太陽質量	$M_{\odot} = 1.989 \times 10^{30}$	kg
地球の質量	$M_{\rm earth} = 5.974 \times 10^{24}$	kg
地球半径	$r_{\rm earth} = 6371.2 \times 10^3$	km

表 6: 物理定数・天文情報など

- [16] A.D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S.M. Foreman, M.M. Boyd, S. Blatt, and J. Ye, "Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10⁻¹⁵" Phys. Rev. Lett. 32 (2007) 641.
- [17] J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T.W. Hänsch, 'Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities', Phys. Rev. A 77 (2008) 053809.
- [18] Y. Li, S. Nagano, K. Matsubara, H. Ito, M. Kajita, and M. Hosokawa, "Narrow-Line and Frequency Tunable Diode Laser System for S-D Transition of Ca⁺ Ions", Jpn. J. Appl. Phys. 47 (2008) 6327.
- [19] J.L. Hall, L.S. Ma, M. Taubman, B. Tiemann, F.L. Hong, O. Pfister, and J. Ye, "Stabilization and Frequency Measurement of the I₂-Stabilized Nd:YAG Laser", IEEE Trans. Instrum. Meas. 48(1999) 583.
- [20] F.-L. Hong, S. Diddams, R. Guo, Z.-Y. Bi, A. Onae, H. Inaba, J. Ishikawa, K. Okumura, D. Katsuragi, J. Hirata, T. Shimizu, T. Kurosu, Y. Koga, and H. Matsumoto, "Frequency measurements and hyperfine structure of the R(85)33-0 transition of molecular iodine with a femtosecond optical comb", J. Opt. Soc. Am. B 21 (2004) 88.
- [21] V. Leonhardt and J.B. Camp "Space interferometry application of laser frequency stabilization with molecular iodine", Appl. Opt. 45 (2006) 4142.
- [22] O. Acef, "Metrological properties of CO2/OsO4 optical frequency standard", Opt. Commun. 134 (1997) 479.
- [23] S.N. Bagayev, A.K. Dmitriyev, P.V. Pokasov, and B.N. Skvortsov, in *Proceedings of the Fifth Symposium on Frequency Standards and Metrology*, Edited by J.C. Bergquist (World Scientific, Singapore, 1996) pp. 289-296.

	項目	値	単位
試験マス			
	質量	$m_{\rm p} = 2$	kg
	密度	$\rho_{\rm P} = 2.2 \times 10^3$	kg/m^3
	磁化率	$\chi_{\rm m} = 1.37 \times 10^{-5}$	0,
	最大電荷量	$q_0 = 10^{-13}$	С
	鏡寸法	50	mm 立方
	鏡面積	$a_{\rm mir} = 7.07 \times 10^{-4}$	m^2
	温度	$T_{\rm p} = 293$	Κ
	Q 値	10^{6}	
	マレクション	$E_0 = 7.2 \times 10^{10}$	Pa
	ポアソン比	$\sigma = 0.17$	
干涉計		0 0.11	
17241	干涉計其線長	L = 30	cm
	λ 射しーザー米量	$P_{\rm r} = 25$	mW
		$h_{\rm L} = 20$ $h_{\rm c} = 1030$	nm
	レジル区 国油数	$\chi = 1050$ $\mu = 2.01 \times 10^{14}$	нш Ца
	「一次奴」 工法計フィネフ	$\nu = 2.91 \times 10$	112
	ⅅロノイホス レーザービームス	100	m
		$w_0 = 10$	111 A /XX7
合甲	儿筷山品里丁幼平	$\eta = 0.9$	A/ W
俐生	匠旦	M 400	l- m
	貝里	$M_{\rm sc} = 400$	кg 2
	衣山傾	$A_{\rm sc} = 1.9$	m-
	温度	$T_{\rm sc} = 293$	K
	温度変化	$\delta T_{\rm sc}/T_{\rm sc} = \delta W_0/4W_0$	$Hz^{-1/2}$
	熱膨張率	2.5×10^{-3} (Alminium)	K^{-1}
	質量分布の非対称性	$\Delta M_{\rm c} \sim 2$	kø
	北対称質量までの距離	$r_{aa} = 0.3$	m
衛早軌道・環境			
南王机造 极先	動 道高度	$h_{\rm obs} = 500 \times 10^3$	m
	前道周期	$n_{\rm OFB} = 000 \times 10$ 94 62	min
	地表との相対速度	$v_{\perp} = 7.613 \times 10^3$	m/s
	油衣 この 品内 逆反 速度 恋 化	$\delta v \sim 0.01 \times v$	$m/s/Hz^{1/2}$
	必反交に	$\dot{\theta}$	dom/a
	地球に対りる用述反	$\theta_{\rm sc} = 0.54 \times 10$	deg/s
	太陽輻射圧	$W_0 = 1360$	W/m^2
	太陽輻射圧変化量	$\delta W_0 = 0.2 \times (1 \text{ Hz}/f)^{1/3}$	$W/(m^2 Hz^{1/2})$
	大気圧	$\sim 10^{-7}$	Pa
	大気密度	$\rho = 1.2 \times 10^{-12}$	kg/m^3
	大気摩擦係数	$c_{\rm d} = 2.2$	0/
	窒素分子数密度	$\bar{n} = 2.5 \times 10^{14}$	$/m^3$
	室素分子質量	$m_{\rm N_2} = 4.65 \times 10^{-26}$	kg
		$n_{\rm pr} = 30$	8 counts/s
	エネルギー	$E_d = 3.2 \times 10^{-11}$	J
	- • • • •		-

表 7: ミッション要求・システム要求時に前提としたパラメータ

- [24] 豊嶋守生、"Trends of research and development on optical space communications technology (光宇宙通信の研究開発動向)", in *Proceedings of the IEICE General Conference*, 2006 年 エレクトロニクス, pp. s97-s98.
- [25] F.T. Herzog, "An optical phase locked loop for coherent space communications", dissertation, Swiss Federal Institute of Technology, Zurich (2006).
- [26] http://www.tesat.de/index.html
- [27] H. Kobayashi, A. Shimota, K. Kondo, E. Okumura, Y. Kameda, H. Shimoda, and T. Ogawa, "Development and evaluation of the interferometric monitor for greenhouse gases: a high-throughput Fourier-transform infrared radiometer for nadir Earth observation", Appl. Opt. 38 (1999) 6801.
- [28] V.G. Ford, P.D. Lisman, S.B. Shaklan, J.T. Trauger, T. Ho, D. Hoppe, and A.E. Lowman, "The Terrestrial Planet Finder Coronagraph: technology and mission design studies", in Proc. SPIE 5487 (2004) 1274.
- [29] W. Cash, "X-ray interferometry", Exp. Astron. 16 (2003) 91.
- [30] W.L. Smith, H.E. Revercomb, and G.E. Bingham, "Geostationary Fourier Transform Spectrometer (GIFTS)-The new millennium earth observing-3 mission", in *Proceed*ings of IRS 2000: Current Problems in Atmospheric Radiation (A. Deepak Publishing, 2001).
- [31] M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morancais, D. Demuth, in The ADM-Aelous Mission - The First Wind-Lidar in Space in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference, ILRC 2004, Matera, Italy, Edited by G. Pappalardo, A. Amodeo, (ESA Publication Division, ESTEC, Noordwijk, The Netherlands, 2004), p. 953.
- [32] L. Cacciapuoti, N. Dimarcq, G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, P. Berthoud, A. Jornod, F. Reina, S. Feltham and C. Salomon, "Atomic Clock Ensemble in Space: Scientific Objectives and Mission Status", Nuclear Physics B (Proc. Suppl.) 166 (2007) 303.
- [33] F. Heine, R. Lange, K. Schieber, S. Windisch, and B. Smutny, "Coherent Seed Laser for the AEOLUS Mission". Coherent Laser Radar Conference 2007.
- [34] Ph. Laurent, A. Clairon, P. Lemonde, G. Santarelli, C. Salomon, C. Sirmain, F. Picard, Ch. Delaroche, O. Grosjean, M. Saccoccio, M. Chaubet, L. Guillier, J. Abadie, "The Space Clock PHARAO: Functioning and Expected Performances", in *Frequency* control symposium and pda exhibition jointly with the 17th european frequency and time forum, 2003. proceedings of the 2003 ieee international, p.179-184.
- [35] G. Müller, P. McNamara, I. Thorpe, and J. Camp, "Laser frequency stabilization for LISA", NASA Technical Publication TP-2005-212790 (2005).

- [36] Experimental Gravitational Physics Using Drag-Free Satellites, http://www.dragfreesatellite.com/index.html
- [37] Gravity Probe B Web Page, http://www.gravityprobeb.com/
- [38] 小型科学衛星プリプロジェクトチーム,小型科学衛星シリーズ システム定義書 (System Definition Document),ドラフト版 2008 年 8 月 18 日.
- [39] John C. Mankins, 'Technology Readiness Levels', A White Paper, April 6, 1995, Advanced Concepts Office, Office of Space Access and Technology, NASA.
- [40] N. Uehara and K. Ueda "Frequency Stabilization of Two Diode-Pumped Nd:YAG Lasers Locked to Two Fabry-Perot Cavities", Jpn. J. Appl. Phys. 33 (1994) 1628.
- [41] K. Nakagawa, A.S. Shelkovnikov, T. Katsuda, and M. Ohtsu, "Absolute frequency stability of a diode-laser-pumped Nd:YAG laser stabilized to a high-finesse optical cavity", Appl. Opt. 33 (1994) 6383.
- [42] M. Notcutt, L.-S. Ma, J. Ye, and J.L. Hall, "Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity", Opt. Lett. 30 (2005) 1815.
- [43] L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, "Vibration-induced elastic deformation of Fabry-Perot cavities", Phys. Rev. A 74 (2006) 053801.
- [44] T. Nazarova, F. Riehle, and U. Sterr, "Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser", Appl. Phys. B 83 (2006) 531.
- [45] K. Numata, A. Kemery, and J. Camp, "Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities", Phys. Rev. Lett. 93 (2004) 250602.
- [46] M. Notcutt, L.-S. Ma, A.D. Ludlow, S.M. Foreman, J. Ye, and J.L. Hall, 'Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers", Phys. Rev. A 73 (2006) 031804R.
- [47] M. Troebs, "Laser development and stabilization for the spaceborne. interferometric gravitational wave detector LISA", Dissertation. Univ. Hannover (2005).
- [48] J. Harris, G. Burnie, MD, Ultralight Propellant Tank for NASA Space Technology 5, AIAA-2003-4608, 39h AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 2003.
- [49] Y. Nakayama, I. Funaki, H. Kuninaka, Sub-Milli-Newton Class Miniature Microwave Ion Thruster, Journal of Propulsion and Power 23 (2007) 495.
- [50] H. Koizumi and H. Kuninaka, Low Power Micro Ion Engine Using Microwave Discharge, AIAA-2008-4531, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 2008.

- [51] V. Hruby, et al., ST7-DRS Colloid Thruster System Development and Performance Summary, AIAA-2008-4824, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 2008.
- [52] M. M. Micci and A. D. Ketsdever, Micropropulsion for Small Spacecraft, Progress in Astronautics and Aeronautics Series, 187 (2000).
- [53] C. Scharlemann, M. Tajmar, A. Genovese, N. Buldrini, and R. Schnitzer, In-FEEP Qualification Test Program for LISA Pathfinder, AIAA-2008-4825, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 2008.
- [54] M. Gollor, and M. Boss, Micro-Newton Electric Propulsion Subsystems for Ultra-Stable Platforms, AIAA-2006-4825, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 2006.
- [55] K. S. Thorne, "Gravitational radiation", in Three hundred years of gravitation, edited by S. Hawking and W. Israel (Cambridge University Press, 1987), p. 330-458.
- [56] R. A. Hulse and J. H. Taylor, "Discovery of a pulsar in a binary system", Astrophys. J. 195 (1975) L51; R. A. Hulse, "The discovery of the binary pulsar", Rev. Mod. Phys. 66 (1994) 699; J. H. Taylor, "Binary pulsars and relativistic gravity", Rev. Mod. Phys. 66 (1994) 711.
- [57] J. Weber, "Detection and Generation of Gravitational Waves", Phys. Rev. 117 (1960) 306; J. Weber, "Evidence for Discovery of Gravitational Radiation", Phys. Rev. Lett. 22 (1969) 1320.
- [58] G. E. Moss, L. R. Miller, and R. L. Forward, "Photon-Noise-Limited Laser Transducer for Gravitational Antenna", Appl. Opt. 10 (1971) 2495.
- [59] C. Kim, V. Kalogera, DR. Lorimer, "The probability distribution of binary pulsar coalescence rates. I. Double neutron star systems in the Galactic field", Astrophysical Journal 584 (2003) 985; AJ. Faulkner, M. Kramer, AG. Lyne, et al., "PSR J1756-2251: A new relativistic double neutron star system, Astrophysical Journal 618 (2005) L119.
- [60] "LIGO II Conceptual Project Book", LIGO M990288-A-M (1999).
- [61] K. Kuroda, M. Ohashi, S. Miyoki, et al., "Large-scale cryogenic gravitational wave telescope", International Journal of Modern Physics D 8 (1999) 557; K. Kuroda, The status of LCGT, Class. Quantum Grav. 23 (2006) S215.
- [62] Wilkinson Microwave Anistropy Probe Web Page, http://map.gsfc.nasa.gov/
- [63] B. L. Schumaker, Class. Quantum Grav. 20 (2003) S239.
- [64] 平成 18 年度版 理科年表, 国立天文台編.

- [65] International Center for Global Gravity Field Models, http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html
- [66] 国土地理院 地磁気観測量, http://vldb.gsi.go.jp/sokuchi/geomag/index.html