

Complex Projects

Gary Sanders, TMT Project
Project Science Workshop
Fort Lauderdale, November 2010

Project configurations

- Linear projects
- Nonlinearities/complications in projects
- Composite operating+project setting
- Multiple support sources
- Collaborative projects
- Global projects
- Bottom-up collaboratories
- "Almost big" science

The "Linear" Project

ideal case

Executing the project consists solely of carrying out a well defined plan

- Project goals and requirements are stable
- Sponsor support and funding are stable
- Managing institutions do not confuse the goal of project success with their other goals
- Resources are matched to project
- Resources are really controlled in one project office
- Project team owns the plan

The result is that the major risks are technical

Remaining risks are inexperience and human behavior

Managing complex (nonlinear) projects

- Most real world projects are not linear projects
- Nonlinear projects are managed with great management attention to nonlinear attributes
 - Diffuse goals steered towards project goal
 - Multiple resource bases coordinated through negotiation and consensus building rather than real control
 - Project replanning places heavy burden on leadership and erodes focus on and respect for project plan
 - Project is distracted by reinventing and rejustifying itself

Managing complex (nonlinear) projects

- Most nonlinear projects are managed without reference to a simple linear plan
 - How it could be
 - The most important things that should be managed for project success are the linear attributes
 - Nonlinear aspects are taken for granted and an accommodation is made and not seen as a complication
 - This accommodation is a slippery slope
- Projects must strive to achieve a linear model as much as possible in order to minimize risk

Generic nonlinearities/complications...

- Major project replanning is caused by:
 - Project goals unstable
 - Politics interfere with project progress
 - project either follows politics or
 - tries to operate adaptively in the lee of the political winds
 - Sponsor attention or support varies within term of project
 - Annual funding does not follow either:
 - funding profile dictated by technical pace of project or
 - funding profile agreed to in a funding limited plan

... Generic nonlinearities/complications..

- Institutional setting of project poor
 - Operating laboratory management imperatives distort decision making, resource allocation, funds management
 - Host institutional culture incompatible with project culture
 - Host institutional support infrastructure not matched to project
 - Institutional setting fragmented among disparate institutions

...Generic nonlinearities/complications..

- Project team members suffer cultural mismatch
 - <u>traditional</u> "small science" vs. "big science" gap
 - values system not matched to project science
 - project science not matched to traditional graduate student education, nor to tenure evaluation process
 - projects are successful because the contributions of many types of team members are combined, thus contributions must be matched to project needs and not just to academic meritocracy
 - team members do not respect the systems and processes of large projects
 - dysfunctional information sharing, information structure
 - Promotes fragmentation into small islands or "stovepipes" often along scientist/nonscientist lines

...Generic nonlinearities/complications

- Resources management decentralized
 - European model with independent institutes each controlling own budget and resources
- Scientific creativity without formal change management
- Project unable to "heal" or to confront surprise

Composite operating+project setting

- Project is either a:
 - Hybrid "operating + project" organization or
 - A project embedded in and dependent upon a large operating scientific laboratory for significant resources
- Either may bring project culture into tension with the imperatives and culture of an operating laboratory
- In a linear project, the sole management imperative is successful completion of the project within the plan
- In a composite project, operating laboratory imperatives can intrude

Operating laboratory imperatives

- Maximize or maintain overall laboratory funding
 - Tendency to commingle lab and project resources
- Maintain operating laboratory programs without reductions to support projects
 - Sharing assets dilutes strength
- Exercise flexibility in assigning functional resources
 - Key skills and leaders moved around among lab programs
 - Resources may be denied to projects when needed
 - Resources may suffer divided attention

Manager culture at operating labs

- Projects are managed to one-time-only plan with well defined product
 - Resource requirements are well defined
 - Manager perspective is delivery of product
 - Projects are inherently unstable and not conservative
 - Managers work to build up to plan, follow it, repair it, finish it, and dismantle project team
- Laboratories are managed to a plan that is relative from year to year with a broader mission
 - Resource stream is variable
 - Manager perspective is conservative and management attention is on the marginal changes
 - Managers are adapting and revising priorities frequently as goals and conditions dictate

Advantages of operating laboratory setting

- Significant competences, technical capabilities and infrastructure may already be available
- Avoid need to start from green field
- Precious resources can be assigned from laboratory and returned to it when no longer needed
- These advantages are realized only when the assignment, priority and reabsorption are well managed
 - This is limited by operating lab manager culture

Pressures on individuals in operating laboratories

- Career progression tied to individual contribution to overall laboratory mission
 - Significant contributions to discrete projects may not align well with broad laboratory mission
 - Split allegiance problem even if reporting lines always clear
 - Reabsorption into ongoing laboratory programs not always smooth
 - Project funding may be a bump in lab funding
 - Time in project may interrupt career progression

Solutions to composite project environment — for managers

- No substitute for proper management awareness, attention and active management of this issue
 - Make contribution to projects a core part of incentives system
- Situate projects in "skunk works"
 - Consciously create fenced project with dedicated resources, complete staffing and strong top management champions
 - Create a "stovepipe"
 - Properly manage staffing bump and reabsorption of core staff
- Resist ongoing fiefdoms, operational "stovepipes"
- Match overall lab programs to resources
 - An overloaded donkey cart lifts the donkey's hooves off the ground

Advice for the project participants

- Watch for these conditions and deal with them at the initiation of the project
- ...continued vigilance...

Multiple support sources

- Multiple funding sources may be:
 - predominantly controlled by single project management
 - not significantly different from linear model
 - or substantially controlled outside of project management
 - project decisions require negotiation and consensus building retarding project
 - contingency may be held outside project
 - retards project management and introduces oversight officials into inappropriate management role

Coping with multiple funding sources

- Multiple funding control points inevitably leads to a project that costs more, takes longer and is less agile and adaptive than one with single point control of resources
- Major resource partners may be exposed to risk of delay or shortfall from subsidiary contributors
- Partner performance risk should be folded into the contingency fund planning and into workplan strategy for dealing with delays

Coping with multiple funding sources

- Management attention is divided by need to negotiate and manage partner contribution issues
 - This may be a very delicate and sophisticated task
 - Include additional strength in management team to support this

Coping with multiple funding sources

- Build a strong set of Memoranda of Understandings with partners with appropriate attention to
 - how binding they are
 - management of delay and default
 - how project benefits are tied to progress
 - how performance is assessed periodically

Collaborative projects

- Consider a
 - well defined project with
 - a central project management and
 - major resources are controlled by that management, but
 - the project teams consist of multiple groups of contributors from different institutions that have a continuing existence
- This differs from collaborations of groups that combine to exploit the project's product
 - The "science team" collaboration

Collaborative projects

- Most common paradigm in high-energy physics detector projects
- Project challenges arise from
 - distributed nature of team
 - uneasy match between project WBS and collaborating group capabilities/roles
 - Group allegiance/advocacy of their solutions to project needs vs. allegiance to overall project goal
 - This is a bottom-up version of operating lab goal tension

Collaborative projects — wide area

- "The most important tool of the highenergy physicist is a Boeing 707!" – attributed to G. K. O'Neill, Princeton, circa 1968
- Teleconference, email, video conference, web collaboration tools
- Collaboration meetings face-to-face needed in the right balance

Collaborative projects - responsibilities

- Delegate responsibility through the organization and WBS
- Don't build the WBS to match the collaborating groups
 - Follow the deliverables
 - But define the responsibility of the collaborating group very clearly through
 - the details of the WBS and
 - through collaboration MOU's

Collaborative projects – group goals

- Assume collaborating groups join because they want to achieve the project goal, the science goal
- Recognize that they bring their own continuing goals to this perspective
 - funding needs
 - their in-house technology or expertise
 - their style of work and culture
- Integrating collaborating groups requires
 - Communication
 - Process and governance

Collaborative projects - process

- Projects are a command structure
- Collaborations require visibility of project process and sharing in governance
- Projects are not democracies
- The project director and project manager must have full authority
- The collaborative balance must be established by appropriate process
 - Process must be defined and consistent to build trust

Collaborative projects - buildup

- Early buildup phase
 - Project organizers need to build strong collaborative team
 - Collaborators are encouraged and courted
 - Project offers an opportunity
 - Collaborating group offers a contribution
 - The "politics of inclusion"
 - Build an army for a campaign

Collaborative projects - buildup

 From a toast I made once in Moscow during the buildup "courting" phase of a very big high-energy physics collaboration

"un catalogo egli è che ho fatt'io;
Osservat'e, leggete con me!
In Italia seicento e quaranta;
In Alemagna duecento trent'una;
Cento in Francia, in Turchia novant'una;
Ma, ma in Ispagna, son già mille e tre!"
Leporello; Atto I. Scena V.
Don Giovanni by Mozart and da Ponte

Collaborative projects - definition

- Project must be defined into a reference project and then to a baseline
 - Design and responsibility choices must be made
 - This can discourage and alienate some collaborating groups
 - If their aspirations were tied up in a particular approach they may lose interest
 - Define technology and design decision processes formally
 - Follow competitive review process and reach recommendation to project management
 - Support redefinition of roles after decision
 - Build trust and loyalty to the project through a formal and defendable process
 - Do not make needed project decisions hostage to collaborator resistance

Collaborative projects

- Build a linear project from the collaborating team
- Organize by deliverables
- Carefully define roles and responsibilities
- Employ open participatory process
- Director/Project Manager must have full authority

Global projects

- Global projects are international collaborative projects, but international collaboration
 - is not merely incidental
 - As in lab to lab or university to university
 - is fundamental to the architecture and nature of the collaboration and resource stream
 - is government to government in nature

Global projects – one lead partner

- Does one country take the lead?
 - Does that country contribute more?
 - Do they benefit more?
 - Do they take more risk?
 - Do they control key decisions?
 - Does this arrangement discourage partnership?

Global projects – balanced partners

- Is the international partnership symmetric and balanced with responsibilities and benefits balanced?
 - Is there a single project management authority?
 - Is there a clear definition of
 - Contributions of partners
 - Benefits to partners
 - Consequences of delay or default in contributions
 - Management of risks
 - "juste retour" or distribution of contracts or contribution "in kind"
 - Is there a competition for roles?

Global projects – structure choice

- When is the decision made on one lead partner or a balanced partnership?
 - SSC was one lead partner up front
 - ALMA is a balanced partnership up front
 - LHC is one lead partner up front
 - Advanced LIGO is one lead partner up front
 - Linear Collider...? (appears to be balanced)
 - TMT, E-ELT, SKA, ... large telescope projects?
- Make the decision up front at the very early pre-courtship stage
- Governments care about these things

Global projects – value accounting

- Define contributions and economic benefits by value estimated in project cost book using a single reference currency and include all elements of WBS
 - US practice includes everything
 - European practice normally counts only new investment costs
 - Use US method to establish value
 - Let partners then use their own accounting to accomplish their pledged role
 - Measure earned value using US value

Global projects

- Intrinsic cultural differences will be a large factor in managing a global project
 - Work styles
 - August in France (February in Chile)
 - Risk management
 - Contingency never budgeted in the past
 - In some European countries groups just go back to sponsor for more resources or use operating budgets to stretch project and complete work scope
 - In other European countries, sponsor commitments are fixed and cannot be increased leaving only stretchout or new collaborators to address risks

Global projects

- Appropriate for the very biggest projects
 - Perhaps the only way to proceed on really big projects
- Always more expensive and less agile than single nation projects
- Very good for world science
- Rarely successful if truly global in scale
 - SSC
 - ITER to date …
 - Space Station

Bottom-up collaboratories

- "Collaboratory"
 - "...laboratory without walls..."
 - Computational and informatics systems shared invisibly and transparently over wide areas
 - Instrumentation shared, operated and interrogated invisibly and transparently over wide areas
 - Very new idea enabled by information technology
 - An NSF incubated idea

Top-down collaboratories

- Central director and coordinating institution manages collaboratory including planning, program development, resource management
- Not different from collaborative project or central lab managed research effort except that technology enables wide area distribution of information resources or instrumentation reach
 - Even the centralized fields like high-energy physics are moving to data analysis collaboratories through virtual data grids
 - Astronomers forming virtual observatories
 - These separate science team from builders of big instruments

Bottom-up collaboratories

- Collaborating nodes in collaboratory share in program and project definition, execution, operation, program development and governance in flattened hierarchy
- This paradigm reflects
 - Distributed technology
 - Culture of the scientific field that creates the collaboratory
 - HEP one costly detector 1000 authors on papers
 - NEON -Environmental biology 3 authors or less → NEON collaborators and long author lists

Bottom-up collaboratories

- A very long way from linear model of big science project
- Parallel instrumentation and information infrastructure projects are relatively loosely coordinated to produce a highly effective integrated scientific capability
- How are the normal project attributes of baseline definition, configuration management, performance measurement, risk management and project repair carried out?

"Almost big" science

- For this workshop, big science projects can be described by costs above ~\$100 million
 - Above ~\$1 billion also but ...
- "almost big" means that you think you can scale from small projects and just use some of the big project methods
 - This usually happens because proponents don't feel they are in the big science range
- Perspectives discussed here are needed for these
 \$5 million \$50 million projects
- "almost big" projects often started with the wrong perspective
- NAS study (2007) looked at DOE oversight for different size projects

The "Linear" Project

ideal case

Executing the project consists solely of carrying out a well defined plan

- Project goals and requirements are stable
- Sponsor support and funding are stable
- Managing institutions do not confuse the goal of project success with their other goals
- Resources are matched to project
- Resources are really controlled in one project office
- Project team owns the plan

The result is that the major risks are technical

Remaining risks are inexperience and human behavior

