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§1  Introduction  



Situation ＆ Motivation 
• Consider a binary system formed of  a stellar mass 

particle and intermediate-mass BH (IMBH) surrounded 
by dark matter (DM) halo.  

• Consider the inspiral GW from the binary 

• How accurate DM parameters are determined by GW 
observations ?  
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Strategy 

• Particle movement affected by BH & DM 

• Inspiral gravitational wave (GW) 

• DM information contained in GW waveform 

• Extract DM information by matched filtering 

We found DM information can be determined 
very accurately by GW observations. 



§2  Dark Matter Distribution 



Dark Matter Distribution 
around Massive Black Hole 

• Suggested first by Gondolo ＆ Silk (1999) 

• Adiabatic growth of IMBH creates high DM region. 

• ρ : DM density 
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This region is called DM mini-spike 



Dark Matter Distribution 
around Massive Black Hole 

• Suggested first by Gondolo ＆ Silk (1999) 

• Adiabatic growth of IMBH creates high DM region. 

• ρ : DM density 

 

This region is called DM mini-spike 
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Power-law index of DM spike 
• Assumption 

– adiabatic growth of BH 

– Initial profile                         , final profile  

• Conservation laws 

– mass conservation of DM 

 

– total angular momentum conservation 

※rough estimate 

Ref. Ullio, Zhao and Kamionkowski:  
astro-ph/0101481 



Power-law index of DM spike 
• Assumption: 

– The growth of the central BH is adiabatic 

• Adiabatic invariants: 

– Angular momentum: L 

– Radial action: Jr 

ρi(r) fi (E,L) ff (E,L) ρf(r) 

Eddington’s  
formula 

Adiabatic 
Invariants 

Volume 
integration 

Ref. Ullio, Zhao, Kamionkowski:  
astro-ph/0101481 



DM halo distribution 
• DM mini-spike profile 
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• Initial DM profile is well-approximated by Navarro-
Frenk-White (NFW) profile.  

mini-spike 



§3  Gravitational Wave waveform 



Situation 

• Consider a binary system formed of  a stellar mass 
particle and intermediate-mass BH surrounded by 
dark matter (DM) halo.  

• MDM halo～106 M⦿ 

    MIMBH～103M⦿ 

     Mstar～1 M⦿ 

• Assumptions 

– Circular orbit 

– Constant DM density 
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Effect of DM halo on the particle 

1. Gravitational potential of the central IMBH 

2. Gravitational potential of the DM halo 

3. GW back-reaction force 

4. Dynamical friction  

      from a dence DM halo  

IMBH IMBH IMBH 

orbital cycle DM halo 

GWs 

DM mini-spike 

Equation of motion (EoM) 



Equation of motion for the particle 

• EoM for the particle 

 

 

– 1st,2nd  terms: Gravitational potential force 

– 3rd term         : GW back-reaction force 

– 4th term         : Dynamical friction force 

 • are very small effects 

• can be treat as a perturbation 



GW Waveform 
• GW waveform for the Newtonian circular orbit 

 

ι GWs 
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quadrupole formula GW waveform 



GW Waveform 
 including orbital time dependence 

• Energy balance 

– Orbital energy Eorbit decrease by GW radiation loss EGW 
and the dynamical friction loss EDF . 

orbital shrinking 

GW loss 

friction loss 



Rewriting GW waveform 

Fourier transform 
by Stationary 
phase method 

Consider only plus mode 

1. 

2. 

3. 

4. 



GW waveform: final form 
• GW Waveform for plus mode in Fourier space 

• GW Phase 

Two DM parameters 
α : power-law index of DM profile 
cε : the other DM parameters  

Mc: charp mass 



§4  GW observations 



GW observation: eLISA 

Ref. Amaro-Seoan et al,(2012) arXiv:1201.3621 

• Consider eLISA observation 
- eLISA: evolved Laser Interferometer Space Antenna 
- space-based detector 
- 5 years observation until the coalescence 

 

 eLISA sensitivity curve 
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Data Analysis: Matched filtering 

output: s(t) Filter:  
Template ht(t;θ) 
(θ:parameters) 

GW signal: h(t) 

n(t) Noise is filterd out 

s(t)=h(t)+n(t) 

• Detector output: 
– s(t) = h(t) + n(t)   ( |h(t)| << |n(t)| ) 

• detector output: s(t) 

• unknown GWs signal: h(t) 

• detector noise: n(t) 

• We can extract the GW signal in the detector noise 
by mixing  the output s(t) with the template ht(t) 

 

 
Filtering procedure:  
  

Correlation between signal and template 



Foundations of Parameter Estimation 

• Assuming detector noise is stationary and Gaussian 

⇒ Detector noise is a random Gaussian process 

⇒ Estimator θ
^
 have statistical errors Δθ 

• How accurate the waveform parameters are 
determined by GW observations? 

• Detector output s(t) = h(t;θ)+n(t) 
– h(t;θ) : template,  n(t) : detector noise 

– θ:waveform parameters, such as A,Mc,tc,Ψc etc. 

Γij     : Fisher matrix 

( | ) : noise weighted inner product 



Parameter Estimation Procedure 

１．Construct the theoretical waveform h(t;θ) 

 

２．Derivative of h(t;θ) with respect to θ 

 

３．Take inner product (∂h/∂θi|∂h/∂θj) ≡ Γij 

 

４．Measurements errors are the square root of          
the diagonal element of the inverse of Γij 

 

 

Waveform parameters 

Fisher matrix 

Template 



Parameter Estimation 
• GW waveform 

• Six waveform parameters θ 

– A : overall amplitude 

– tc,φc : coalescence time and phase 

– Mc : charp mass 

– α, cε : dark matter parameters 

 α : power-law index of DM profile, cε : the other DM parameters  



Parameter Estimation 
• Derivative of h(t;θ) with respect to θ 

 

Fisher matrix 

Measurements errors 



Result: Error of DM parameters 
• Errors of two DM parameters α, cε 

– For larger α, DM parameters are determined more accurately 

– α↑ ⇒ ρDM(r→0) ↑ ⇒ effect of DM on particle ↑ 

– For initially NFW profile,  α=7/3 

– DM parameters can be measurable with very good accuracy! 

Δα/α vs α for S/N=10 Δcε/cε vs α for S/N =10 

Initially NFW Initially NFW 



Why DM errors go up in α>2.5 ? 

• This behavior can be explained by the number 
of orbital cycles in the detector band of eLISA. 

Ncycle↓ , S/N ↓,  Δθ ↑ 



In the case of initially NFW profile 
• In the case of initially NFW profile, α = 7/3 

• Errors of waveform parameters are as follows 
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Phase parameters are measurable  
with very good accuracy. 

Why? 

GW Phase are strongly related to S/N. 

For inspiral GWs, 



§5  Summary & Future Work 



1. DM parameters can be determined very accurately by 
GW observations. 

2. Observation of GWs from IMBHs will be a new 

    tool to probe the DM distribution near the IMBH. 

3. This may offer hints on the history of BHs  formation.  

 

 

Summary 
• We consider the binary composed of a stellar mass object 

and an IMBH surrounded by DM mini-spike. 

• We research on how accurate the DM parameters 
contained in the GW waveform are measurable. 

 



Future work 

• Including 1st Post-Newtonian effect 

• Non-zero eccentricity 

• Accretion 

• Non-spherical of DM mini-spike 

• IMBH spin effect 

 

etc…… 

 
Thank you !! 


