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インフレーション重力波
インフレーション中、テンソル揺らぎが
量子的に生成

ds2 = a2(t)[�d�2 + (�ij + hij)dxidxj ]

�2
h(k) =

�
Hinf

2�MP

�2無次元パワースペクトル：
（スケール不変）

ホライズン外：
ホライズン内：

ḧ� + 3Hḣ� + (k/a)2h� = 0 h � const
h � a(t)�1
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k < aH

k > aH

波長＞ホライズン半径

波長＜ホライズン半径

重力波は宇宙膨張を
感じない
h � const

重力波は宇宙膨張を
感じる

h � a(t)�1
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インフレーション 再加熱 輻射優勢

重力波生成

重力波の波長ごとに
ホライズンに入る時期が異なる
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Figure 1: (Top) Spectra of the gravitational wave background for inflationary scale Hinf =
1014 GeV and 1013 GeV. Here we have taken TR = 107 GeV. Also shown are sensitivities
of planned space-based gravitational wave detectors, DECIGO with a correlation analysis
(blue dashed line), ultimate-DECIGO (purple dotted line), and correlation of analysis of
ultimate-DECIGO (red dot-dashed line). (Bottom) Same as the top panel for the dilution
factor F = 10 for Tσ=10 GeV and TR = 107 GeV.

5

重力波スペクトルに宇宙熱史が刻まれている！

KN, J.Yokoyama (2010)

N.Seto, J.Yokoyama (2003), Boyle, Steinhardt (2005), KN, Saito, Suwa, Yokoyama (2008)
Kuroyanagi, Chiba, Sugiyama (2008)
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f = 2.6 Hz
�

T

108 GeV

�

宇宙の温度と背景重力波周波数の関係
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初期宇宙相転移

R.Jinno, T.Moroi, KN, arXiv:1112.0084
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宇宙における相転移
• クォーク-ハドロン相転移 (T~100MeV)

• 電弱相転移 (T~100GeV)

• ヒッグス(-like)粒子の発見 @ LHC！

• Peccei-Quinn 相転移 (T~10^{8}-10^{12}GeV?)

• GUT (大統一理論) 相転移 (T~10^{16}GeV?)
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相転移の模型

V (�) =
g

24
(�2 � v2

�)2

ある対称性の電荷を持つスカラー場 �

�

V (�) 高温
低温

(E.g. ヒッグス場)

高温 : 

低温 :

� = 0

� = v�

symmetric phase

broken phase

ポテンシャル：
+

1
24

hT 2�2

13年10月27日日曜日



準安定真空の
エネルギー

t

輻射優勢

物質優勢

�

相転移があったとき

通常のシナリオ

�

V (�) 高温
低温

t

輻射優勢

物質優勢

�

V0

V0

わずかな期間インフレーション
が起こる
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3

FIG. 1: Evolution of the product tH as a function of time
(normalized by t(g=1)

PT ) for g = 10−2 (red-solid), 10−3 (green-
dashed), and 10−4 (blue-dotted). Here we take h = 1. Notice
that the figure is independent of vφ.

potential at T = Tc well agrees with that at T = 0, we
approximate the energy density of the φ sector as

ρφ =

{

V (0) : t < tPT

0 : t > tPT
, (11)

where tPT is the time of the phase transition.
With the above approximation, the evolution of the

scale factor a is governed by

H2 ≡

(

ȧ

a

)2

=
ρrad + ρφ
3M2

Pl

, (12)

where ρrad is the energy density of the radiation compo-
nent; it evolves as

ρ̇rad + 4Hρrad = V (0)δ(t− tPT), (13)

and is related to the cosmic temperature as ρrad =
π2

30 g∗T
4, with g∗ being the effective number of massless

degrees of freedom. In our analysis, we take the standard-
model value of g∗, which is 106.75. Although χ may also
contribute to g∗, such a contribution is so small that we
can safely neglect it.
In Fig. 1, we plot the product of the time t and the

expansion rate H as a function of t for several values

of g. (In the plot, t is normalized by t(g=1)
PT , which is the

time of the phase transition for the case of g = 1, to make
the figure independent of vφ.) The product tH is equal
to 1

2 if the universe is dominated by radiation. We can
see that the evolution of the universe at t ∼ tPT deviates
from that of radiation-dominated universe as g becomes
smaller. This behavior can be easily understood from the
relation [ρφ/ρrad]t=tPT

∼ O(h2/g∗g). For smaller g, the
potential energy of φ at the origin tends to dominate the

FIG. 2: ΩGW(k)/ΩSM
GW(k) as a function of k (normalized by

kPT) for g = 10−2 (red-solid), 10−3 (green-dashed), and 10−4

(blue-dotted). Here we take h = 1. Notice that the figure is
independent of vφ.

universe before the phase transition. In the small g limit,
a brief period of inflation takes place [13].
Once the evolution of the scale factor is understood, we

can easily solve Eq. (3) to obtain the present spectrum of
the GW. In Fig. 2, we plot the present GW spectrum as
a function of k. Assuming that Tc is much higher than
the electroweak scale, we normalize ΩGW as

ΩGW(k $ kPT) = Ω(SM)
GW (k), (14)

where kPT ≡ aPTHPT is the wavenumber of the mode
which enters the horizon at the time of the phase transi-
tion.
One can see that the GW spectrum with k ! kPT is

suppressed. With the present approximation, the follow-
ing relation holds,

R ≡
ΩGW(k)

Ω(SM)
GW (k)

∣

∣

∣

∣

∣

k"kPT

=
ρrad(Tc)

ρrad(Tc) + V (0)
, (15)

where R is the reduction rate of the high-frequency GW
spectrum due to the phase transition. The right-hand
side of Eq. (15) depends only on the combination of g/h2,
and is independent of vφ. For g/h2 = 1×10−4 (3×10−4,
1 × 10−3, 3 × 10−3, 1 × 10−2), R is given by 0.25 (0.50,
0.76, 0.91, 0.97). If a short period of inflation occurs with
sufficiently small g/h2, the spectrum of GWs which enter
the horizon during such a period is proportional to k−4.
In order to discuss the possibility of studying the cos-

mic phase transition using GWs, it is necessary to under-
stand the present frequency of the mode with k ∼ kPT.
(The comoving wavenumber is related to the present fre-
quency as f = k/2πa0, with a0 being the present scale
factor.) Let us define

TPT ≡

(

4g2

h2
+

5g

4π2g∗

)1/4

vφ, (16)

V (�) =
g

24
(�2 � v2

�)2

R.Jinno, T.Moroi, K.Nakayama (2012)

将来DECIGOで観測可能

相転移があったときの重力波スペクトル

kPT

2�
� 2.7 Hz

�
TPT

108 GeV

�
g = 10�2

g = 10�3

g = 10�4

h = 1

TPT � g1/4v�

+
1
24

hT 2�2

相転移のエネルギー
スケールに対応

kPT � 0.1� 1 Hz
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Dark radiation

R.Jinno, T.Moroi, KN, arXiv:1208.0184
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Helium 
abundance 

Dark radiation

�rad =

�
1 + Ne�

7
8

�
4
11

�4/3
�

��Radiation energy density

Ne� = 3.04 in the standard model

Ne� = 3.36+0.68
�0.64 @95%CL

Planck+WMAP pol+ high l

[Ade et al. 1303.5076]

CMB

Ne� = 3.51± 0.35 @ 68%C.L.

[Izotov, Stasinska, Guseva, 1308.2100]

13年10月27日日曜日



Axion DR from string theory
T

T � T + i�

Kahler moduli in type IIB string :
Shift symmetry :

Kahler potential :

axion

K = K(T + T †)

T � �T � � � + ia�
2KTT

Moduli decay : � � 2a

Axionic dark radiation !
[ Cicoli, Conlon, Quevedo (2012), Higaki, Takahashi (2012),

Higaki, KN, Takahashi (2013) ]
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Dark radiation and GW

ḧij + 3Hḣij + (k/a)2hij = 16�G�ij

Dark radiation affects GW spectrum in two ways

Modified expansion rate Anisotropic stress of X

S.Weinberg (2003), Y.Watanabe, E.Komatsu (2005)

cf ) For standard neutinos, see

Modified expansion rate by parent field of X 

Anisotropic stress is turned on after X production

Modification on GW spectrum at high frequency

Modification on GW spectrum at low frequency
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A model
A scalar field � decays into X at H � ��

with branching ratio BX

2

confirming the dark radiation produced thermally and
decoupled at some epoch in the early Universe.
This paper is organized as follows. In Sec. II we re-

view a model of dark radiation produced by decaying
particles. In Sec. III we calculate the evolution of grav-
itational waves in the presence of anisotropic stress in-
duced by dark radiation, and show that characteristic
signatures appear in the spectrum. Sec. IV is devoted to
conclusions and discussion.

II. DARK RADIATION PRODUCTION BY
DECAYING PARTICLES

A. Background evolution

We consider the case where the non-relativistic matter
φ decays into X particle which plays the role of dark
radiation. Thus X is assumed to be massless and has
no interaction with other fields. To be more precise, X
must be relativistic until the recombination epoch and its
interaction must be so weak that remains to be decoupled
from thermal bath after the production by φ decay. The
evolution equations of components are given by

ρ̇φ + 3Hρφ = −Γφρφ, (2)

ρ̇rad + 4Hρrad = Γφ(1−BX)ρφ, (3)

ρ̇X + 4HρX = ΓφBXρφ, (4)

where the dot represents time derivative, and the Fried-
mann equation,

H2 =
ρtot
3M2

P

=
ρφ + ρrad + ρX

3M2
P

, (5)

where ρφ, ρrad and ρX are energy densities of φ, visible
radiation and dark radiation, respectively, MP is the re-
duced Planck scale, Γφ is the decay rate of φ, and BX

denotes its branching fraction into X .
The extra effective number of neutrino species is given

by

∆Neff =
43

7

[

10.75

g∗s(Tφ)

]1/3 [ ρX
ρrad

]

H"Γφ

, (6)

where g∗s(Tφ) denotes the relativistic degrees of freedom
at T = Tφ where the φ decays, and ρX and ρrad are
evaluated well after the φ decay. In our numerical study,
we take the standard-model value of g∗s(Tφ) = 106.75.
In order to obtain ∆Neff " 1, the energy density of φ

should nearly dominate the Universe at the decay. There-
fore, the expansion rate of the Universe around the φ de-
cay epoch is modified. Fig. 1 shows the product tH as a
function of cosmic time t normalized by tdec, defined by

tdec ≡
1

Γφ
. (7)

Here we have fixed initial conditions of ρφ and ρrad so
that ∆Neff = 1 is realized. Solid (red), long-dashed
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FIG. 1: Evolution of the product tH as a function of cosmic
time (normalized by tdec) for BX = 0.26 (red solid), 0.5 (green
dashed), 0.7 (blue dotted) and 1.0 (magenta dot-dashed) for
explaining ∆Neff = 1.

(green), short-dashed (blue) and dotted (magenta) lines
correspond to BX = 0.26, 0.5, 0.7 and 1.0, respectively.
It is seen that φ has significant energy fraction around
its decay and the expansion rate is modified from the
radiation-dominated one (tH = 1/2). In the limit of φ
domination, we need BX " 0.26 for ∆Neff = 1. Thus
BX ! 0.26 is required in order to realize ∆Neff = 1.
Since the background expansion rate is imprinted in the
GW spectrum [35–50], a particular shape in the GW
spectrum is expected if dark radiation is produced by
decaying matter, as we sill see.

B. Model

As one of the motivated models of φ and X , we con-
sider the saxion and axion in a supersymmetric axion
model [51]. This possibility was studied in Refs. [12, 16,
19, 23, 26] in the context of dark radiation.

The axion is a pseudo Nambu-Goldstone boson as-
sociated with the spontaneous breakdown of the global
U(1)PQ symmetry [52]. It solves the strong CP problem
in the quantum chromodynamics. The axion has interac-
tions suppressed by the U(1)PQ breaking scale, fa. The
value of fa is phenomenologically constrained as 109GeV
" fa " 1012GeV, and the axion mass is ∼ 10−2–10−5 eV
for this range of fa [53]. Thus the axion is a good candi-
date of dark radiation.

In a supersymmetric extension of the axion model,
there appears a scalar partner of the axion, called saxion,
which is massless in supersymmetric limit but obtains a
mass from supersymmetry breaking effects. Writing the
saxion mass as mφ, the saxion decay rate into the axion

Background evolution :

� nearly dominate at
decay for �Ne� � 1

ttdec

�rad

�

��

�X

BX = 1

�̇� + 3H�� = �����

�̇rad + 4H�rad = ��(1�BX)��

�̇X + 4H�X = ��BX��
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decaying matter, as we sill see.

B. Model

As one of the motivated models of φ and X , we con-
sider the saxion and axion in a supersymmetric axion
model [51]. This possibility was studied in Refs. [12, 16,
19, 23, 26] in the context of dark radiation.

The axion is a pseudo Nambu-Goldstone boson as-
sociated with the spontaneous breakdown of the global
U(1)PQ symmetry [52]. It solves the strong CP problem
in the quantum chromodynamics. The axion has interac-
tions suppressed by the U(1)PQ breaking scale, fa. The
value of fa is phenomenologically constrained as 109GeV
" fa " 1012GeV, and the axion mass is ∼ 10−2–10−5 eV
for this range of fa [53]. Thus the axion is a good candi-
date of dark radiation.

In a supersymmetric extension of the axion model,
there appears a scalar partner of the axion, called saxion,
which is massless in supersymmetric limit but obtains a
mass from supersymmetry breaking effects. Writing the
saxion mass as mφ, the saxion decay rate into the axion
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confirming the dark radiation produced thermally and
decoupled at some epoch in the early Universe.
This paper is organized as follows. In Sec. II we re-
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3M2

P

=
ρφ + ρrad + ρX

3M2
P

, (5)

where ρφ, ρrad and ρX are energy densities of φ, visible
radiation and dark radiation, respectively, MP is the re-
duced Planck scale, Γφ is the decay rate of φ, and BX

denotes its branching fraction into X .
The extra effective number of neutrino species is given

by

∆Neff =
43

7

[

10.75

g∗s(Tφ)

]1/3 [ ρX
ρrad

]

H"Γφ

, (6)

where g∗s(Tφ) denotes the relativistic degrees of freedom
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. (7)
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FIG. 1: Evolution of the product tH as a function of cosmic
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It is seen that φ has significant energy fraction around
its decay and the expansion rate is modified from the
radiation-dominated one (tH = 1/2). In the limit of φ
domination, we need BX " 0.26 for ∆Neff = 1. Thus
BX ! 0.26 is required in order to realize ∆Neff = 1.
Since the background expansion rate is imprinted in the
GW spectrum [35–50], a particular shape in the GW
spectrum is expected if dark radiation is produced by
decaying matter, as we sill see.

B. Model

As one of the motivated models of φ and X , we con-
sider the saxion and axion in a supersymmetric axion
model [51]. This possibility was studied in Refs. [12, 16,
19, 23, 26] in the context of dark radiation.

The axion is a pseudo Nambu-Goldstone boson as-
sociated with the spontaneous breakdown of the global
U(1)PQ symmetry [52]. It solves the strong CP problem
in the quantum chromodynamics. The axion has interac-
tions suppressed by the U(1)PQ breaking scale, fa. The
value of fa is phenomenologically constrained as 109GeV
" fa " 1012GeV, and the axion mass is ∼ 10−2–10−5 eV
for this range of fa [53]. Thus the axion is a good candi-
date of dark radiation.

In a supersymmetric extension of the axion model,
there appears a scalar partner of the axion, called saxion,
which is massless in supersymmetric limit but obtains a
mass from supersymmetry breaking effects. Writing the
saxion mass as mφ, the saxion decay rate into the axion
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FIG. 6: Same as Fig. 3 but for BX = 1.0.

diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2
Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T (tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T i(tot)

i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 1

Numerical result
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diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX
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, (29)

where

ε =
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1 for a real scalar,

7/4 for a chiral fermion,
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and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2
Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T (tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T i(tot)

i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 1
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diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
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k

)2
Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T (tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T i(tot)

i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)
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diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is
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Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T (tot)
ij = Pgij + a2Πij , (A2)

P ≡
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3
T i(tot)

i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)
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(as well as other fluids) contribute to GWs at the second
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mordial tensor perturbation. However, this contribution
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Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
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tum range contained in the volume element is given by
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comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as
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diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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X is continuously produced by the decay of φ so that the
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′
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k

)2
Πij , (A1)

where the prime denotes the derivative with respect to
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∫

dt/a and Πij is defined by using the total energy
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P ≡
1

3
T i(tot)

i . (A3)
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lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
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FIG. 3: ΩGW(k)/Ω(SM)
GW (k) as a function of k (normalized by

kdec) for BX = 0.26. The green (dotted) line is the full result,
taking account of the effect of anisotropic stress. For compar-
ison, in the solid line (red), we also plot ΩGW(k)/Ω(SM)

GW (k)
without the effect of anisotropic stress.

C. Results

In Figs. 3 – 6, we plot the GW spectrum normalized

by Ω(SM)
GW (k) predicted in the present scenario, varying

BX from 0.26 to 1.0. The horizontal axis is normalized
by kdec. For comparison, we have also plotted the GW
spectrum without the effect of anisotropic stress. As one
can see, the spectrum of the GWs has a characteristic
change at k ∼ kdec if the dark radiation (with ∆Neff ∼
1) is produced by the decay of massive particle. Thus,
once the GW spectrum is precisely measured, we have a
chance to extract the information on the mechanism of
dark-radiation production.
There are several effects on the GW spectrum in the

presence of dark radiation. First, since φ (nearly) dom-
inates the Universe at the decay in order to realize
∆Neff ∼ 1, ΩGW decreases at k ! kdec. This is due to the
change of equation of state of the Universe. As a result,
as one can see, ΩGW is suppressed for high frequency
modes which enter the horizon before the φ-domination.
In addition, most importantly, the effect of anisotropic

stress caused by dark radiation dissipates the GW en-
ergy density of the mode with k " kdec. Consequently,
together with the effect of the change of equation of state,
a dip in the spectrum may appear at k ∼ kdec. In partic-
ular, the dip becomes more apparent when BX is close
to 1. Such a dip provides a smoking-gun signature of the
dark-radiation production by the decay of massive par-
ticles. If φ and X are completely sequestered from the
standard-model sector, for example, BX = 1 may be re-
alized. Then, such a model provides a striking signature
in the GW spectrum.
Note that, in the low frequency limit k " kdec, we have
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numerically confirmed the suppression factor C2 caused

by dark radiation. As a result, ΩGW/Ω(SM)
GW at k " kdec

is close to one as shown in Fig. 2.

IV. CONCLUSIONS AND DISCUSSION

In this paper we have studied the spectrum of infla-
tionary GW background in the presence of dark radia-
tion, motivated by recent observational preferences for
∆Neff ∼ 1. We have assumed that the dark radiation is
non-thermally produced by decay of massive particles φ.
There are several effects on the GW spectrum. First, the
equation of state of the Universe is modified due to the φ
energy density and it changes the shape of the GW spec-
trum. Second, the anisotropic stress carried by dark ra-
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diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
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Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
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Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 0.26 BX = 0.5

BX = 0.7 BX = 1
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具体的模型
R.Jinno, T.Moroi, KN, arXiv:1307.3010

超対称アクシオン模型

超対称マヨロン模型

W = �S(��̄� f2) + y1�QQ̄

W = �S(��̄� f2) + yi�NiNi

高温：� = 0 低温：� = f 相転移

� はアクシオンに崩壊 dark radiation

� 振動期相転移後、 再加熱
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Figure 9: (Blue-dotted) GW spectrum for Case 1, i.e, GW spectrum with decoupling of dark
radiation X and subsequent decay of X in addition to the phase transition. ∆Neff is assumed to be
1.3 at the decoupling and then decreases to 0.5 after the decay. (Red-solid) Flat spectrum expected
in a simple RD universe. (Green-dashed) GW spectrum for the case without the production of
dark radiation.

3. X particles decouple from the thermal bath, after which X particles behave as dark
radiation.

4. Some non-relativistic matter begins to dominate the universe.

5. The non-relativistic matter decays into the visible radiation.

Part of visible radiation or X may provide the non-relativistic matter if it becomes non-
relativistic due to the redshift. In order to study the case in which the universe evolves from
the RD epoch to the MD epoch, we adopt the following equations to follow the evolution of
the background:

ρvac =

{

Λ4 for t < tPT
0 for t > tPT,

(4.7)

ρ̇r + 4Hρr = Λ4δ(t− tPT)− εXρrδ(t− tdecouple) + Γρm, (4.8)

ρ̇X + 4HρX = εXρrδ(t− tdecouple), (4.9)

ρ̇m + 3Hρm = −Γρm, (4.10)
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Figure 10: (Blue-dotted) GW spectrum for Case 2; the case with the decoupling of some radiation
from thermal bath. ∆Neff is assumed to be 2 at the decoupling and then decrease to 0.5 after decay.
(Red-solid) Flat spectrum expected in simple RD universe. (Green-dashed) Spectrum without the
production of dark radiation.

where tdecouple ! Γ−1. The resulting GW spectra are shown in Fig. 10 and Fig. 11. Here,
we assumed instant decoupling as in the Case 1 and

Tdecouple = 10−2 × TPT, (4.11)

Tdecay = 10−5 × TPT. (4.12)

In addition, in our calculation, the massive particle which dominates the universe is assumed
to originate from the visible radiation. If it is part of the non-interacting radiation we may
not apply the derivation of the wave equation in Ref. [25] and the calculation would be
very complicated. However, from the fact that massive particles do not generate anisotropic
stress, the GW spectrum in such a case is expected to be almost the same in the above
figure.

4.3 Case 3

Next, let us consider the following cosmological scenario.

1. A brief period of thermal inflation is caused by a scalar field φ.

2. After the phase transition, φ instantaneously decays into dark radiation X .

3. Part of dark radiation decays into visible radiation.

19

具体的なセットアップでは豊かな構造が現れる
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Large B-mode ?
10 Planck Collaboration: Constraints on inflation

Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N⇤ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(�) = ⇤4 exp
 

�� �
Mpl

!

(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) / t2/�2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = �8(ns � 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(�) = ⇤4
 

�

Mpl

!��
(36)

lead to inflation with a(t) / exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + �) and � > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ⇡ �8�(ns � 1)/(� � 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any �.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(�) ⇡ ⇤4
 

1 � �
p

µp + ...

!

, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns � 1 ⇡ �4M2

pl/µ
2 + 3r/8 and

r ⇡ 32�2⇤M2
pl/µ

4. This potential leads to predictions in agree-
ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ & 9 Mpl.

Models with p � 3 predict ns � 1 ⇡ �(2/N)(p � 1)/(p � 2)
when r ⇠ 0. The hill-top potential with p = 3 lies outside the

Planck, 1303.5082

Large field model (chaotic inflation) は観測と合わない？
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Chaotic inflation
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Polynomial chaotic inflation
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Polynomial chaotic inflation
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FIG. 2: (Top) The prediction of polynomial chaotic inflation
model is shown in (ns, r) plane for Ne = 60 (red, solid) and
50 (red, dashed). In this plot we have taken θ = 23π/60.
Also shown are observational 1σ (dark) and 2σ (light) con-
straints from the Planck satellite [2]: Planck + WMAP po-
larization (gray), Planck + WMAP polarization + high-$
CMB measurement (red), Planck + WMAP polarization +
baryon acoustic oscillation (blue). Filled circles connected
by line segments show the predictions from chaotic inflation
with V ∝ ϕ3 (green), ϕ2 (black), ϕ (yellow), ϕ2/3 (red) and
R2 inflation (orange), for Ne = 50 (small circle)–60 (big cir-
cle). Purple band shows the prediction of natural inflation [2].
(Bottom) Same as top panel, but for various values of θ. Here
we have taken Ne = 60.

polarization search experiments. Note that the predicted
(ns, r) lies within the 1σ region for θ = π/3 ∼ π/2. In
the following we take θ = 23π/60 unless otherwise stated.
In Fig. 3, the scalar spectral index as a function of ϕt is
shown. It is seen that in the large ϕt limit, the prediction
approaches to that of the chaotic inflation with quadratic
potential, as expected. By choosing ϕt = O(10), the pre-
dicted ns and r can lie within the 1σ region allowed by the
Planck data. In particular, the predicted r is testable in

 0.94
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 0.99
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FIG. 3: The scalar spectral index as a function of ϕt/MP

for θ = 23π/60.
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FIG. 4: The parameters λ and m (in Planck unit) which
reproduce the Planck normalization of the CMB anisotropy
for θ = 23π/60.

future/on-going B-mode polarization search experiments.
While the predicted ns and r depends only on m/λ,

the Planck normalization of the CMB anisotropy fixes a
relation between m and λ. We have confirmed that they
are approximately given by m " (1− 2)× 1013GeV and
λ <∼ 5×10−7 for the spectral index allowed by the Planck
data as shown in Fig. 4. In terms of d1 and d2, they are
roughly related to each other as |d2| = O(0.01)|d1| for
the parameters of our interest.
The reheating can be induced by introducing the fol-

lowing coupling to the Higgs doublets in the superpoten-
tial:

W ⊃ κXHuHd, (6)

with a numerical constant κ. This allows the φ(X) decay
into the Higgs boson and higgsino pair. Note here that
φ and X are maximally mixed with each other to form

2

we find

V !
1

2
ϕ2

(

m2 −
√
2mλ sin θ ϕ+

λ2

2
ϕ2

)

. (4)

Here we have assumed that both σ andX are stabilized at
|σ| $ 1 and 〈X〉 ∼ 0 due to the higher order terms in the
Kähler potential (1). Note that 〈W 〉 is suppressed due
to 〈X〉 ∼ 0, which enables the inflation for ϕ ( 1. The
schematic picture of the scalar potential is shown in Fig. 1
for a few different values of θ. The quadratic chaotic in-
flation model is reproduced in the limit of λ → 0. For
sin θ > 0, the second term in (4) gives a negative contri-
bution to the scalar potential, making the potential flat-
ter or negatively curved at large ϕ. It is worth stressing
that a variety of the inflation models can be realized sim-
ply by taking the d1 and d2 terms in (2) with a different
relative phase. Note that this is effectively a single-field
inflation, since the other degrees of freedom can be safely
stabilized during inflation.
Before proceeding further, let us mention the works

in the past. In Ref. [14], the inflation model based
on the scalar potential equivalent to (4) was studied in
a non-supersymmetric framework, where the inflaton is
a real scalar field. Recently, the model was revisited
and its global supersymmetric extension was proposed
in Ref. [15], where it was shown that the predicted spec-
tral index and the tensor-to-scalar ratio can be consistent
with the Planck data for θ ≈ π/2. However, the infla-
ton is a complex scalar field and it is not clear how to
stabilize the inflationary trajectory for θ += π/2. We also
note that, in supergravity, the large expectation of their
〈W 〉 would lead to a negative scalar potential for the in-
flaton field value greater than the Planck scale, spoiling
the inflation. This is known as one of the difficulties to
implement chaotic inflation in supergravity with a sin-
gle superfield. The latter problem can be avoided in the
no-scale supergravity [16–18].
Now let us continue with our discussion of the inflation

model (4). The global shape of the potential depends on
the relative phase θ as shown in Fig. 1. In a case of θ =
π/2, there appear one local maximum at ϕ = m/(

√
2λ) ≡

ϕt and two degenerate minima at ϕ = 0 and 2ϕt.c For
smaller values of θ, the minimum at ϕ += 0 is lifted. As
long as there are such local minimum and maximum, the
initial value of the inflaton field should be below the local
maximum since otherwise the inflaton would be trapped
in the false vacuum. The false vacuum disappears for
| sin θ| < 2

√
2/3. In this case successful chaotic inflation

takes place for an arbitrary large initial field value [3].
Interestingly, if the relative phase θ marginally satisfies

c In the case of θ = π/2, the inflaton dynamics is equivalent to that
in the spontaneous symmetry breaking model first considered in
[19]. See also Ref. [20].

FIG. 1: The schematic picture of the scalar potential (4).

the inequality, there appears a flat plateau at around ϕ =
ϕt. As we shall see shortly, the predicted spectral index
as well as the tensor-to-scalar ratio are then significantly
modified and they can lie within the 1σ allowed region.
The chaotic inflation with quadratic potential, V =

m2ϕ2/2, is reproduced in the limit ϕt ( O(10). As
mentioned before, the model is at odds with the recent
Planck result at the 2σ level. An interesting situation
appears when ϕt ∼ O(10). In this case, the last 50 or
60 e-foldings of the inflation occurs around ϕ ∼ ϕt where
the potential is flatter due to the contribution from the
ϕ3 and ϕ4 terms. As a result, the inflation energy scale
can be significantly lowered compared with the quadratic
chaotic inflation model, when the Planck normalization
of the density perturbations is imposed. Thus it will be
able to relax the tension between the prediction of the
chaotic inflation model and observations.
We have numerically solved the equation of motion of

ϕ with the scalar potential (4) and calculated the scalar
spectral index, ns = 1− 6ε+2η, and the tensor-to-scalar
ratio, r = 16ε, where 2ε = (V ′/V )2 and η = V

′′

/V
evaluated at ϕ = ϕ(Ne) [21]. Here ϕ(Ne) is calculated
from

Ne =

∫ ϕ(Ne)

ϕend

V

V ′
dϕ, (5)

where ϕend denotes the field value at the end of inflation,
at which max[ε, |η|] = 1. The results are shown in the top
panel of Fig. 2 Ne = 60 (red, solid) and 50 (red, dashed)
together with observational constraints from the Planck
satellite [2]. Here we have taken θ = 23π/60, which
marginally satisfies the condition for the disappearance
of the false vacuum leading to a flat plateau in the infla-
ton potential. In the bottom panel of Fig. 2, results for
various values of θ are shown for Ne = 60. We can clearly
see that almost entire region allowed by the Planck data
can be covered by our model, and importantly, the pre-
dicted value of r is testable in future/on-going B-mode

N=50

KN, F.Takahashi, T.T.Yanagida,1303.7315

Polynomial chaotic inflation

See also :
Destri, de Vega, Sanchez (2007)
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Comments

• DECIGOで検出可能な重力波を予言する
インフレーション模型はある

• Polynomial chaotic inflation

• Higgs inflation,  R^2 inflation, ...

• Hybrid inflation の場合には、cosmic string

からの重力波が期待できる
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Figure 6: Summary of the potential cosmological sources of a stochastic gravitational ra-
diation background, including inflationary models, first order phase transitions and cosmic
strings, as well as a primordial 0.9K blackbody graviton spectrum (the analogue of the
blackbody photon radiation). Also plotted are the relevant constraints from the COBE
measurements, pulsar timings, and the sensitivities of the proposed interferometers. Notice
that local cosmic strings and strongly first-order phase transitions may produce detectable

backgrounds in contrast to standard slow-roll inflation models.

the cosmological fluid near the temperature T ∼ 10 MeV is well understood.
However, at the higher frequencies probed by ground-based detectors, our un-
certainty in the number of degrees of freedom of the cosmological fluid, as
determined by the correct model of particle physics at that energy scale, may
reduce the predicted amplitude (15) of gravitational radiation.

7 Conclusion

We have presented improved calculations of the spectrum of relic gravitational
waves emitted by cosmic strings. We demonstrated that the effect of a grav-
itational back-reaction on the radiation spectrum of cosmic string loops, for
which there is an effective mode cut-off n∗

<
∼102, may serve to weaken the

18

Cosmic string loop からの重力波

Battye, Caldwell, Shellard (1997)

13年10月27日日曜日



infinite string

string loop

13年10月27日日曜日



Figure 2: The spectrum of the GW background, ΩGW(f), for various values of α with
Gµ = 10−7. Solid lines take into account the effect of particle emission and dotted ones
do not.

We show the spectrum of the GW background for various values of Gµ with α = 0.1
in Fig. 1, and for various values of α with Gµ = 10−7 in Fig. 2. Other parameters
are taken to be w = (1TeV)−1, p = 1,Γ = 50. The solid lines take into account the
effect of particle emission. Dotted ones do not include it, which correspond to w = 0.
The shapes of the solid lines are identical to those shown in previous papers [35, 37].
GWs of higher frequencies are emitted earlier. The plateau in the high frequency region
corresponds to GWs emitted in the radiation-dominated era and the downward-sloping
region corresponds to those from the matter-dominated era. In the high frequency region,
it is seen that ΩGW calculated including particle emission is suppressed compared with
that neglecting it. This is because such high frequency GWs are emitted at the time
when the size of loops is so small that the energy of loops is converted into particles
more efficiently. The suppression is milder than shown in Ref. [22], since in Ref. [22] it
is assumed that when a loop becomes smaller than l= it instantly disappears converting
its whole energy to particles. On the other hand, we here trace the evolution of loop size
even after particle emission dominates GW emission, and such a loop contributes to the
GW background until it completely disappears.

We see in Fig. 2 that reducing α shifts the spectrum toward higher frequency direction
and suppresses the amplitude. The reason why the whole spectrum goes right is simply
that loops become small and unable to emit low frequency GWs. The lower cut-off of the
frequency of the GW background from loops is given by ∼ (αt0)−1 where t0 is the present
age of the universe. GWs of frequencies ω ∼ (αt0)−1 are emitted by loops born within
one present Hubble time. When α is extremely small, there are no GWs of low frequency
emitted by loops, and the GW background in the low frequency region consists of GWs

9

Kawasaki, Miyamoto, KN (2011)

Loop size による違い
Gµ = 10�7

� � �H : loop の典型的な大きさ
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where g1, g2 and nc are numerical factors of O(1). The grey
regions, corresponding to 4 reconnection probability values,
are rejected by our analysis at a 90% level. The black lines
show the bounds derived from the constraints on the GW
stochastic background spectrum for p̃ = 10−3 and for a small-
loop scenario (CMB, pulsar and LIGO data). The rejected
region is always on the right-hand side of these lines.
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FIG. 4: Ωgw in the case where strings emerge at the end of inflation for Gµ = 10−7, Tr ∼ 10 MeV.

The upper line represents the estimate including “rare bursts”, and the lower line represents the

estimate excluding “rare bursts”.

GW background is much larger than that of kinks if they coexist in some frequency band.

However, a loop cannot emit GWs with frequencies smaller than the inverse of its size. Thus

there is a cut on the low frequency side of the spectrum of GWs from loops corresponding

to the inverse of the loop size ∼ (αt)−1. If α ∼ Gµ, the spectrum of GWs from loops begins

to appear at ω ! 10−12 Hz, and this covers the frequency band where both pulsar timing

arrays and GW detectors have good sensitivity. However, α is one of the most unknown

parameters in the cosmic string model. According to some recent simulations [12], α may

be much greater and the broader region may be covered by loops’ GW. On the other hand,

some recent studies [10, 11] show the possibility that α is extremely small, say, α ∼ (Gµ)n

with n ! 1. In such a case, GWs from loops dominate only very high-frequency region and

GWs from kinks may be observable at low-frequency region. For example, if α " 10−9, the

band of SKA [23] can be used for detection of GWs from kinks, and for Gµ ∼ 10−7, Ωgw
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Infinite string からの重力波

Kawasaki, Miyamoto, KN (2010)
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Summary

• 宇宙初期の相転移

• Dark radiation の生成機構、生成時期

• ...を通した具体的な素粒子模型の検証

• 初期宇宙熱史（再加熱）の解明
インフレーション重力波観測：

インフレーション重力波が見えなくても、
Cosmic string  からの重力波が見える可能性
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Inflationary GWs

Inflation generates primordial GWs as quantum 
tensor fluctuations in de-Sitter spacetime

hij =
1

MP

�

�=+,�

�
d3k

(2�)3/2
h�

k(t)eikxe�
ij

�h�
kh��

k� � =
H2

inf

2k3
�3(k � k�)����

Quantization

�2
h(k) =

�
Hinf

2�MP

�2
Dimensionless power 

spectrum almost scale invariant

ds2 = a2(t)[�d�2 + (�ij + hij)dxidxj ]
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Evolution of GWs
Eq.of.m of GW

ḧ� + 3Hḣ� + (k/a)2h� = 0

(without dark radiation)
h� � const for k � aH

h� � a(t)�1 for k � aH

GW energy density at horizon entry

�GW(k) �M2
P �2

h(k)(k/a)2 �M2
P Hin(k)2�2

h(k)

�tot �M2
P Hin(k)2

�GW(k) =
�GW(k)

�tot
� �2

h(k) � const at horizon entry

�0
GW(k) � �0

rad�2
h(k) at present for k � keq
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GW normalization
4

where r denotes the tensor-to-scalar ratio, nt is the tensor
spectral index, k0 = 0.002Mpc−1 is the pivot scale and

∆2
h(k) ≡

8

M2
P

(

Hinf

2π

)2 ( k

k0

)nt

, (19)

with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
GW (k) = γ(SM)Ω(SM)

rad × ΩGW(k = aH), (20)

where Ω(SM)
rad = 4.2× 10−5h−2 with h parameterizing the

present Hubble parameter as H0 = 100hkm/s/Mpc and

γ(SM) =

[

g∗(Tin(k))

g(SM)
∗0

][

g(SM)
∗s0

g∗s(Tin(k))

]4/3

, (21)

where g(SM)
∗0 = 3.36 and g(SM)

∗s0 = 3.91, and Tin(k) denotes
the temperature at which the mode k enters the hori-
zon. We have γ(SM) # 0.39 for g∗(Tin(k)) = 106.75. The
present GW spectrum per log frequency is then given by

Ω(SM)
GW (k) # 3.3× 10−16

×
( r

0.1

)

(

k

k0

)nt
[

106.75

g∗(Tin(k))

]1/3

. (22)

In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g

(SM)
∗0 ) with

g∗0 = 2

[

1 +Neff
7

8

(

4

11

)4/3
]

. (24)

We find g∗0 # 3.82 for Neff = 4. The factor γ is given by

γ =
1 + 7

43

(

g∗s(Tφ)
10.75

)1/3
∆Neff

1/γ(SM) + 7
43

(

g∗s(Tφ)
10.75

)1/3
∆Neff

, (25)

where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by

C1 ≡
γ

γ(SM)

g∗0

g(SM)
∗0

, (26)
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FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
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high-frequency GWs which may be observed by space-
based GW detectors.
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of expansion rate. Neglecting the effect of anisotropic
stress, we find
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FIG. 2: Relative normalization of the GW spectrum for
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the enhancement factor due to the modified background evo-
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anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
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which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by
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In the presence of dark radiation, the overall normal-
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of expansion rate. Neglecting the effect of anisotropic
stress, we find
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which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.

GW spectrum at horizon entry

Standard model

3

pair is typically [54]

Γφ =
1

64π

m3
φ

f2
a

. (8)

Assuming that the saxion decays in the radiation dom-
inated era, the temperature at the saxion decay is esti-
mated to be

Tφ ∼ 3× 106GeV
( mφ

103TeV

)3/2
(

1010GeV

fa

)

. (9)

The saxion with mass of O(103)TeV is plausible by tak-
ing account of the preference for high-supersymmetry
breaking scale [55] in light of the recent discovery of the
Higgs boson mass of 125GeV [56]. The saxion often dom-
inantly decays into the axion pair (BX # 1). The pro-
duced axions are never thermalized below the tempera-
ture ∼ 107GeV for fa ! 1010GeV [57]. The abundance
of relativistic axion after the φ decay is then estimated
to be

[

ρX
ρrad

]

H!Γφ

∼ BX

[

ρφ
ρtot

]

H=Γφ

#
BX

6

TR

Tφ

(

φi

MP

)2

,

(10)
where TR is the reheating temperature after inflation and
φi is the saxion initial amplitude. Therefore, for appro-
priate choices of TR and φi, the axion abundance pro-
duced by the saxion decay can account for the dark ra-
diation : ∆Neff # 1.

III. SPECTRUM OF GRAVITATIONAL WAVE
BACKGROUND WITH DARK RADIATION

A. Evolution equations

Now let us study the evolution of primordial GWs un-
der the presence of dark radiation. The GW corresponds
to the tensor perturbation of the metric. We define the
line element as

ds2 = −dt2 + a2(t)(δij + hij)dx
idxj , (11)

where hij is the transverse and traceless part of the met-
ric perturbation, and the Fourier amplitude of hij as

hij(t,x) =

∫

d3k

(2π)3
hij(t,k)e

ikx

=
∑

λ=+,×

∫

d3k

(2π)3
h(λ)(t,k)ε(λ)ij eikx,

(12)

where ε(λ)ij denotes the polarization tensor. As shown in

Appendix, h(λ)(t,k) satisfies the following equation

ḧ(λ) + 3Hḣ(λ) +
k2

a2
h(λ)

=− 24H2 1

a4(t)ρtot(t)

×
∫ t

0
a4(t′)ρX(t′)K

(

k

∫ t

t′

dt′′

a(t′′)

)

ḣ(λ)(t′,k)dt′,

(13)

where

K(u) ≡
j2(u)

u2
= −

sin(u)

u3
−

3 cos(u)

u4
+

3 sin(u)

u5
, (14)

with j2 being the second-order spherical Bessel function.
Contrary to the case of neutrinos studied in Refs. [28, 30],
ρX(t′) is inside the time integral since ρX does not scale
as a−4 while X is produced by the φ decay. In terms of
u and u′ defined as

u = k

∫ t

0

dt′

a(t′)
, (15)

u′ = k

∫ t′

0

dt′′

a(t′′)
, (16)

Eq. (13) becomes

h′′(λ) + 2Huh
′(λ) + h(λ)

=− 24H2
u

1

a4(u)ρtot(u)

×
∫ u

0
a4(u′)ρX(u′)K(u− u′)h′(λ)(u′,k)du′,

(17)

where the prime denotes the derivative with respect to u
and Hu ≡ a′/a. We have solved Eq. (17) together with
the background evolution (2) – (4) to derive the present
GW spectrum.

B. Overall normalization

Before showing the detailed results, we here comment
on the normalization of the present GW energy den-
sity. During inflation, quantum fluctuations of the tensor
perturbation is continuously generated which turn into
stochastic GW background in the present Universe af-
ter the horizon-in [58]. It predicts nearly scale invariant
GW spectrum for the GW modes entering in the horizon
in the radiation-dominated era [59–66]. The GW energy
density per log frequency at the horizon crossing k = aH ,
normalized by the critical energy density, is given by [67]

ΩGW(k = aH) =
∆2

h(k)

24
#

2.43× 10−9r

24

(

k

k0

)nt

, (18)

GW spectrum at present (k � keq)

Expansion history :
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GW normalization

GW spectrum at present (k � keq)

Expansion history
modified by X :

4
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
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where g(SM)
∗0 = 3.36 and g(SM)

∗s0 = 3.91, and Tin(k) denotes
the temperature at which the mode k enters the hori-
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find
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where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by
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γ
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which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
GW (k) = γ(SM)Ω(SM)

rad × ΩGW(k = aH), (20)

where Ω(SM)
rad = 4.2× 10−5h−2 with h parameterizing the

present Hubble parameter as H0 = 100hkm/s/Mpc and
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where g(SM)
∗0 = 3.36 and g(SM)

∗s0 = 3.91, and Tin(k) denotes
the temperature at which the mode k enters the hori-
zon. We have γ(SM) # 0.39 for g∗(Tin(k)) = 106.75. The
present GW spectrum per log frequency is then given by
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g
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∗0 ) with
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We find g∗0 # 3.82 for Neff = 4. The factor γ is given by
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where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by

C1 ≡
γ

γ(SM)

g∗0
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∗0

, (26)
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the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
GW (k) = γ(SM)Ω(SM)

rad × ΩGW(k = aH), (20)

where Ω(SM)
rad = 4.2× 10−5h−2 with h parameterizing the

present Hubble parameter as H0 = 100hkm/s/Mpc and
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where g(SM)
∗0 = 3.36 and g(SM)

∗s0 = 3.91, and Tin(k) denotes
the temperature at which the mode k enters the hori-
zon. We have γ(SM) # 0.39 for g∗(Tin(k)) = 106.75. The
present GW spectrum per log frequency is then given by
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g
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∗0 ) with

g∗0 = 2
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all enhancement factor for the GW spectrum is given by
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kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
GW (k) = γ(SM)Ω(SM)

rad × ΩGW(k = aH), (20)

where Ω(SM)
rad = 4.2× 10−5h−2 with h parameterizing the

present Hubble parameter as H0 = 100hkm/s/Mpc and

γ(SM) =
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where g(SM)
∗0 = 3.36 and g(SM)

∗s0 = 3.91, and Tin(k) denotes
the temperature at which the mode k enters the hori-
zon. We have γ(SM) # 0.39 for g∗(Tin(k)) = 106.75. The
present GW spectrum per log frequency is then given by
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g

(SM)
∗0 ) with

g∗0 = 2

[
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We find g∗0 # 3.82 for Neff = 4. The factor γ is given by
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where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by

C1 ≡
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FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.

Radiation
density :

Overall normalization is affected

Standard model plus dark radiation

13年10月27日日曜日



GW normalization

4

where r denotes the tensor-to-scalar ratio, nt is the tensor
spectral index, k0 = 0.002Mpc−1 is the pivot scale and

∆2
h(k) ≡

8

M2
P

(

Hinf

2π

)2 ( k

k0

)nt

, (19)

with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
GW (k) = γ(SM)Ω(SM)

rad × ΩGW(k = aH), (20)

where Ω(SM)
rad = 4.2× 10−5h−2 with h parameterizing the

present Hubble parameter as H0 = 100hkm/s/Mpc and
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where g(SM)
∗0 = 3.36 and g(SM)

∗s0 = 3.91, and Tin(k) denotes
the temperature at which the mode k enters the hori-
zon. We have γ(SM) # 0.39 for g∗(Tin(k)) = 106.75. The
present GW spectrum per log frequency is then given by
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g
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∗0 ) with

g∗0 = 2
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We find g∗0 # 3.82 for Neff = 4. The factor γ is given by
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where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by

C1 ≡
γ

γ(SM)

g∗0
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, (26)
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FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
GW (k) = γ(SM)Ω(SM)

rad × ΩGW(k = aH), (20)

where Ω(SM)
rad = 4.2× 10−5h−2 with h parameterizing the
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where g(SM)
∗0 = 3.36 and g(SM)

∗s0 = 3.91, and Tin(k) denotes
the temperature at which the mode k enters the hori-
zon. We have γ(SM) # 0.39 for g∗(Tin(k)) = 106.75. The
present GW spectrum per log frequency is then given by
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g
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∗0 ) with
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[

1 +Neff
7

8

(

4

11

)4/3
]

. (24)
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where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by
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FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
GW (k) = γ(SM)Ω(SM)

rad × ΩGW(k = aH), (20)
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where g(SM)
∗0 = 3.36 and g(SM)

∗s0 = 3.91, and Tin(k) denotes
the temperature at which the mode k enters the hori-
zon. We have γ(SM) # 0.39 for g∗(Tin(k)) = 106.75. The
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g

(SM)
∗0 ) with

g∗0 = 2

[

1 +Neff
7

8

(

4

11

)4/3
]

. (24)

We find g∗0 # 3.82 for Neff = 4. The factor γ is given by

γ =
1 + 7

43

(

g∗s(Tφ)
10.75

)1/3
∆Neff

1/γ(SM) + 7
43

(

g∗s(Tφ)
10.75

)1/3
∆Neff

, (25)

where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by

C1 ≡
γ

γ(SM)

g∗0

g(SM)
∗0

, (26)
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FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.

Modified BG by X :

Anisotropic stress X :

C2
analytically 
derived in

Dicus, Repko (2004)
C1xC2 accidentally close to unity

13年10月27日日曜日



F : distribution function of X

7

where F (X) and F (rad) are distribution functions of the
dark radiation X and that of ordinary radiation (like
photon, gluon, and so on) with very short free-streaming
length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
We start with the effect of dark radiation on the

anisotropic stress. The distribution function of X obeys
the collisionless Boltzmann equation with source from
non-relativistic decaying particle φ:

dF

dt
=

BX

4π(p0)3
Γφρφδ

(

p0 −
mφ

2

)

, (A5)

where p0 is the energy ofX , and we assume that φ decays
into two Xs. Also note that p0 and pi should be regarded
as functions of pi through gµνpµpν = −(p0)2 + a2(δij +
hij)pipj = 0 and pi = gijpj = a−2(δij −hij)pj . The LHS
of Eq. (A5) is

dF

dt
=

∂F

∂t
+

dxi

dt

∂F

∂xi
+

dpi
dt

∂F

∂pi

=
∂F

∂t
+

pi

p0
∂F

∂xi
+

1

2
gij,k

pipj

p0
∂F

∂pk
,

(A6)

where we used

dxi

dt
=

pi

p0
, (A7)

dpi
dt

=
1

2
gjk,i

pjpk

p0
. (A8)

Eq. (A8) is obtained from the geodesic equation.
Next we decompose F into the unperturbed part

F̄ (t, p), where p ≡ √
pipi should not be confused with

the pressure, and the perturbed part δF . We further
decompose δF into two terms δF1 and δF2 for later con-
venience:

δF1(t, x
i, pi) ≡ F̄ (t, (gijpipj)

1/2/a)− F̄ (t, p),

(A9)

δF2(t, x
i, pi) ≡ F − F̄ − δF1. (A10)

We get from Eq. (A5) the zeroth-order equation

∂F̄

∂t
=

BX

4π(p̄0)3
Γφρφδ

(

p̄0 −
mφ

2

)

, (A11)

and the first-order one

∂(δF1 + δF2)

∂t
+

p̄i

p̄0
∂(δF1 + δF2)

∂xi

+
1

2
(δgjk),i

p̄j p̄k

p̄0
∂F̄

∂pi
= a

∂2F̄

∂p∂t
δp0. (A12)

In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
produced at t = tdec. We can see that the energy fraction
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FIG. 7: 4πp3F̄ as functions of p (normalized by pdec ≡

a(tdec)mφ/2). Each line corresponds to t " tdec (red solid),
t = 10−4tdec (green long-dashed), 10−2tdec (blue short-
dotted) and tdec(magenta dotted).

4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:

δF1 = −
1

2
hij

pipj
p

∂F̄

∂p
, (A13)

δp0 = −
1

2a

hijpipj
p

, (A14)

δpi = −
1

a2
hijpj . (A15)

Using p̂i ≡ pi/p and substituting Eq. (A13) – Eq. (A15)
into Eq. (A12), we get

∂δF2

∂t
+

p̂i
a

∂δF2

∂xi
=

1

2

∂hij

∂t

∂F̄

∂p
pp̂ip̂j. (A16)

In terms of conformal time τ =
∫

dt/a, this equation is
expressed as

∂δF2

∂τ
+ p̂i

∂δF2

∂xi
=

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j. (A17)

In Fourier space,

∂δF2

∂τ
+ ikµδF2 =

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j , (A18)

where

δF2(τ, x
i, pi) =

∫

d3k

(2π)3
δF2(τ, ki, pi)e

ikix
i

, (A19)

hij(τ, x
i) =

∫

d3k

(2π)3
hij(τ, ki)e

ikix
i

, (A20)

µ ≡ k̂ip̂i. (A21)

We can use line-of-sight integral to get the solution of
Eq. (A18):

δF2 =

∫ τ

0
dτ ′

1

2

∂hij

∂τ
(τ ′)

∂F̄

∂p
(τ ′)pp̂ip̂je

−ikµ(τ−τ ′), (A22)

cf) Geodesic eq.
GW effect here

7

where F (X) and F (rad) are distribution functions of the
dark radiation X and that of ordinary radiation (like
photon, gluon, and so on) with very short free-streaming
length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
We start with the effect of dark radiation on the

anisotropic stress. The distribution function of X obeys
the collisionless Boltzmann equation with source from
non-relativistic decaying particle φ:

dF

dt
=

BX

4π(p0)3
Γφρφδ

(

p0 −
mφ

2

)

, (A5)

where p0 is the energy ofX , and we assume that φ decays
into two Xs. Also note that p0 and pi should be regarded
as functions of pi through gµνpµpν = −(p0)2 + a2(δij +
hij)pipj = 0 and pi = gijpj = a−2(δij −hij)pj . The LHS
of Eq. (A5) is

dF

dt
=

∂F
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+

dxi

dt

∂F
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+

dpi
dt
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∂pi

=
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pi
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+

1

2
gij,k

pipj
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∂F

∂pk
,

(A6)

where we used

dxi

dt
=

pi

p0
, (A7)

dpi
dt

=
1

2
gjk,i

pjpk

p0
. (A8)

Eq. (A8) is obtained from the geodesic equation.
Next we decompose F into the unperturbed part

F̄ (t, p), where p ≡ √
pipi should not be confused with

the pressure, and the perturbed part δF . We further
decompose δF into two terms δF1 and δF2 for later con-
venience:

δF1(t, x
i, pi) ≡ F̄ (t, (gijpipj)

1/2/a)− F̄ (t, p),

(A9)

δF2(t, x
i, pi) ≡ F − F̄ − δF1. (A10)

We get from Eq. (A5) the zeroth-order equation

∂F̄

∂t
=

BX

4π(p̄0)3
Γφρφδ

(

p̄0 −
mφ

2

)

, (A11)

and the first-order one

∂(δF1 + δF2)

∂t
+

p̄i

p̄0
∂(δF1 + δF2)

∂xi

+
1

2
(δgjk),i

p̄j p̄k

p̄0
∂F̄

∂pi
= a

∂2F̄

∂p∂t
δp0. (A12)

In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
produced at t = tdec. We can see that the energy fraction
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FIG. 7: 4πp3F̄ as functions of p (normalized by pdec ≡

a(tdec)mφ/2). Each line corresponds to t " tdec (red solid),
t = 10−4tdec (green long-dashed), 10−2tdec (blue short-
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4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:

δF1 = −
1

2
hij

pipj
p

∂F̄

∂p
, (A13)

δp0 = −
1

2a

hijpipj
p

, (A14)

δpi = −
1

a2
hijpj . (A15)

Using p̂i ≡ pi/p and substituting Eq. (A13) – Eq. (A15)
into Eq. (A12), we get

∂δF2

∂t
+

p̂i
a

∂δF2

∂xi
=

1

2

∂hij

∂t

∂F̄

∂p
pp̂ip̂j. (A16)

In terms of conformal time τ =
∫

dt/a, this equation is
expressed as

∂δF2

∂τ
+ p̂i

∂δF2

∂xi
=

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j. (A17)

In Fourier space,

∂δF2

∂τ
+ ikµδF2 =

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j , (A18)

where

δF2(τ, x
i, pi) =

∫

d3k

(2π)3
δF2(τ, ki, pi)e

ikix
i

, (A19)

hij(τ, x
i) =

∫

d3k

(2π)3
hij(τ, ki)e

ikix
i

, (A20)

µ ≡ k̂ip̂i. (A21)

We can use line-of-sight integral to get the solution of
Eq. (A18):

δF2 =

∫ τ

0
dτ ′

1

2

∂hij

∂τ
(τ ′)

∂F̄

∂p
(τ ′)pp̂ip̂je

−ikµ(τ−τ ′), (A22)

Boltzmann eq. for X
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where F (X) and F (rad) are distribution functions of the
dark radiation X and that of ordinary radiation (like
photon, gluon, and so on) with very short free-streaming
length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
We start with the effect of dark radiation on the

anisotropic stress. The distribution function of X obeys
the collisionless Boltzmann equation with source from
non-relativistic decaying particle φ:

dF

dt
=

BX

4π(p0)3
Γφρφδ

(

p0 −
mφ

2

)

, (A5)

where p0 is the energy ofX , and we assume that φ decays
into two Xs. Also note that p0 and pi should be regarded
as functions of pi through gµνpµpν = −(p0)2 + a2(δij +
hij)pipj = 0 and pi = gijpj = a−2(δij −hij)pj . The LHS
of Eq. (A5) is

dF

dt
=

∂F

∂t
+

dxi

dt

∂F

∂xi
+

dpi
dt

∂F

∂pi

=
∂F

∂t
+

pi

p0
∂F

∂xi
+

1

2
gij,k

pipj

p0
∂F

∂pk
,

(A6)

where we used

dxi

dt
=

pi

p0
, (A7)

dpi
dt

=
1

2
gjk,i

pjpk

p0
. (A8)

Eq. (A8) is obtained from the geodesic equation.
Next we decompose F into the unperturbed part

F̄ (t, p), where p ≡ √
pipi should not be confused with

the pressure, and the perturbed part δF . We further
decompose δF into two terms δF1 and δF2 for later con-
venience:

δF1(t, x
i, pi) ≡ F̄ (t, (gijpipj)

1/2/a)− F̄ (t, p),

(A9)

δF2(t, x
i, pi) ≡ F − F̄ − δF1. (A10)

We get from Eq. (A5) the zeroth-order equation

∂F̄

∂t
=

BX

4π(p̄0)3
Γφρφδ

(

p̄0 −
mφ

2

)

, (A11)

and the first-order one

∂(δF1 + δF2)

∂t
+

p̄i

p̄0
∂(δF1 + δF2)

∂xi

+
1

2
(δgjk),i

p̄j p̄k

p̄0
∂F̄

∂pi
= a

∂2F̄

∂p∂t
δp0. (A12)

In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
produced at t = tdec. We can see that the energy fraction
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FIG. 7: 4πp3F̄ as functions of p (normalized by pdec ≡

a(tdec)mφ/2). Each line corresponds to t " tdec (red solid),
t = 10−4tdec (green long-dashed), 10−2tdec (blue short-
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4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:

δF1 = −
1

2
hij

pipj
p

∂F̄

∂p
, (A13)

δp0 = −
1

2a

hijpipj
p

, (A14)

δpi = −
1

a2
hijpj . (A15)

Using p̂i ≡ pi/p and substituting Eq. (A13) – Eq. (A15)
into Eq. (A12), we get

∂δF2

∂t
+

p̂i
a

∂δF2

∂xi
=

1

2

∂hij

∂t

∂F̄

∂p
pp̂ip̂j. (A16)

In terms of conformal time τ =
∫

dt/a, this equation is
expressed as

∂δF2

∂τ
+ p̂i

∂δF2

∂xi
=

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j. (A17)

In Fourier space,

∂δF2

∂τ
+ ikµδF2 =

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j , (A18)

where

δF2(τ, x
i, pi) =

∫

d3k

(2π)3
δF2(τ, ki, pi)e

ikix
i

, (A19)

hij(τ, x
i) =

∫

d3k

(2π)3
hij(τ, ki)e

ikix
i

, (A20)

µ ≡ k̂ip̂i. (A21)

We can use line-of-sight integral to get the solution of
Eq. (A18):

δF2 =

∫ τ

0
dτ ′

1

2

∂hij

∂τ
(τ ′)

∂F̄

∂p
(τ ′)pp̂ip̂je

−ikµ(τ−τ ′), (A22)
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where F (X) and F (rad) are distribution functions of the
dark radiation X and that of ordinary radiation (like
photon, gluon, and so on) with very short free-streaming
length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
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=

BX

4π(p0)3
Γφρφδ

(

p0 −
mφ

2

)
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where p0 is the energy ofX , and we assume that φ decays
into two Xs. Also note that p0 and pi should be regarded
as functions of pi through gµνpµpν = −(p0)2 + a2(δij +
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Eq. (A8) is obtained from the geodesic equation.
Next we decompose F into the unperturbed part

F̄ (t, p), where p ≡ √
pipi should not be confused with

the pressure, and the perturbed part δF . We further
decompose δF into two terms δF1 and δF2 for later con-
venience:

δF1(t, x
i, pi) ≡ F̄ (t, (gijpipj)

1/2/a)− F̄ (t, p),

(A9)

δF2(t, x
i, pi) ≡ F − F̄ − δF1. (A10)

We get from Eq. (A5) the zeroth-order equation
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=
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In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
produced at t = tdec. We can see that the energy fraction
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4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:

δF1 = −
1

2
hij

pipj
p

∂F̄

∂p
, (A13)

δp0 = −
1

2a

hijpipj
p

, (A14)

δpi = −
1

a2
hijpj . (A15)

Using p̂i ≡ pi/p and substituting Eq. (A13) – Eq. (A15)
into Eq. (A12), we get
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a

∂δF2

∂xi
=

1

2

∂hij
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∂p
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In terms of conformal time τ =
∫

dt/a, this equation is
expressed as
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=
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In Fourier space,
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1

2

∂hij
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pp̂ip̂j , (A18)

where
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i, pi) =

∫
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(2π)3
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, (A19)
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∫
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(2π)3
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We can use line-of-sight integral to get the solution of
Eq. (A18):

δF2 =

∫ τ

0
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−ikµ(τ−τ ′), (A22)

Perturbed :

Anisotropic stress

7

where F (X) and F (rad) are distribution functions of the
dark radiation X and that of ordinary radiation (like
photon, gluon, and so on) with very short free-streaming
length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
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In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
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a2
hijpj . (A15)

Using p̂i ≡ pi/p and substituting Eq. (A13) – Eq. (A15)
into Eq. (A12), we get

∂δF2

∂t
+

p̂i
a

∂δF2

∂xi
=

1

2

∂hij

∂t

∂F̄

∂p
pp̂ip̂j. (A16)

In terms of conformal time τ =
∫

dt/a, this equation is
expressed as

∂δF2

∂τ
+ p̂i

∂δF2

∂xi
=

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j. (A17)

In Fourier space,

∂δF2

∂τ
+ ikµδF2 =

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j , (A18)

where

δF2(τ, x
i, pi) =

∫

d3k

(2π)3
δF2(τ, ki, pi)e

ikix
i

, (A19)

hij(τ, x
i) =

∫

d3k

(2π)3
hij(τ, ki)e

ikix
i

, (A20)

µ ≡ k̂ip̂i. (A21)

We can use line-of-sight integral to get the solution of
Eq. (A18):

δF2 =

∫ τ

0
dτ ′

1

2

∂hij

∂τ
(τ ′)

∂F̄

∂p
(τ ′)pp̂ip̂je

−ikµ(τ−τ ′), (A22)

Contributes to
anisotropic stress
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pair is typically [54]

Γφ =
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φ

f2
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. (8)

Assuming that the saxion decays in the radiation dom-
inated era, the temperature at the saxion decay is esti-
mated to be

Tφ ∼ 3× 106GeV
( mφ

103TeV

)3/2
(

1010GeV

fa

)

. (9)

The saxion with mass of O(103)TeV is plausible by tak-
ing account of the preference for high-supersymmetry
breaking scale [55] in light of the recent discovery of the
Higgs boson mass of 125GeV [56]. The saxion often dom-
inantly decays into the axion pair (BX # 1). The pro-
duced axions are never thermalized below the tempera-
ture ∼ 107GeV for fa ! 1010GeV [57]. The abundance
of relativistic axion after the φ decay is then estimated
to be

[

ρX
ρrad

]

H!Γφ

∼ BX

[

ρφ
ρtot

]

H=Γφ

#
BX

6

TR

Tφ

(

φi

MP

)2
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(10)
where TR is the reheating temperature after inflation and
φi is the saxion initial amplitude. Therefore, for appro-
priate choices of TR and φi, the axion abundance pro-
duced by the saxion decay can account for the dark ra-
diation : ∆Neff # 1.

III. SPECTRUM OF GRAVITATIONAL WAVE
BACKGROUND WITH DARK RADIATION

A. Evolution equations

Now let us study the evolution of primordial GWs un-
der the presence of dark radiation. The GW corresponds
to the tensor perturbation of the metric. We define the
line element as

ds2 = −dt2 + a2(t)(δij + hij)dx
idxj , (11)

where hij is the transverse and traceless part of the met-
ric perturbation, and the Fourier amplitude of hij as

hij(t,x) =

∫

d3k

(2π)3
hij(t,k)e

ikx

=
∑

λ=+,×

∫

d3k

(2π)3
h(λ)(t,k)ε(λ)ij eikx,

(12)

where ε(λ)ij denotes the polarization tensor. As shown in

Appendix, h(λ)(t,k) satisfies the following equation

ḧ(λ) + 3Hḣ(λ) +
k2

a2
h(λ)

=− 24H2 1

a4(t)ρtot(t)

×
∫ t

0
a4(t′)ρX(t′)K

(

k

∫ t

t′

dt′′

a(t′′)

)

ḣ(λ)(t′,k)dt′,

(13)

where

K(u) ≡
j2(u)

u2
= −

sin(u)

u3
−

3 cos(u)

u4
+

3 sin(u)

u5
, (14)

with j2 being the second-order spherical Bessel function.
Contrary to the case of neutrinos studied in Refs. [28, 30],
ρX(t′) is inside the time integral since ρX does not scale
as a−4 while X is produced by the φ decay. In terms of
u and u′ defined as

u = k

∫ t

0

dt′

a(t′)
, (15)

u′ = k

∫ t′

0

dt′′

a(t′′)
, (16)

Eq. (13) becomes

h′′(λ) + 2Huh
′(λ) + h(λ)

=− 24H2
u

1

a4(u)ρtot(u)

×
∫ u

0
a4(u′)ρX(u′)K(u− u′)h′(λ)(u′,k)du′,

(17)

where the prime denotes the derivative with respect to u
and Hu ≡ a′/a. We have solved Eq. (17) together with
the background evolution (2) – (4) to derive the present
GW spectrum.

B. Overall normalization

Before showing the detailed results, we here comment
on the normalization of the present GW energy den-
sity. During inflation, quantum fluctuations of the tensor
perturbation is continuously generated which turn into
stochastic GW background in the present Universe af-
ter the horizon-in [58]. It predicts nearly scale invariant
GW spectrum for the GW modes entering in the horizon
in the radiation-dominated era [59–66]. The GW energy
density per log frequency at the horizon crossing k = aH ,
normalized by the critical energy density, is given by [67]

ΩGW(k = aH) =
∆2

h(k)

24
#

2.43× 10−9r

24

(

k

k0

)nt

, (18)
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where we have used δF2(τ = 0) = 0 because there is no
X in the beginning.
We take the first-order perturbation of the energy-

momentum tensor of X :

T (X)
µν =

1
√

−detgµν

∫

d3pF
pµpν
p0

, (A23)

δT (X)
ij =

1

a3

∫

d3p

[

(δF1 + δF2)
pipj
p̄0

+ F̄ pipjδ

(

1

p0

)]

.

(A24)

Note that energy momentum tensor defined above trans-
forms as a tensor under general coordinate transforma-
tions since

∫

d3p/p0 ∝ d4pδ(gµνpµpν). Using Eq. (A13)
– Eq. (A15), we get

δT (X)
ij =

1

a3

∫

d3p
[

δF2app̂ip̂j

−
1

2
ahklp

2p̂ip̂j p̂kp̂l
∂F̄

∂p
+

1

2
ahklpp̂ip̂j p̂kp̂lF̄

]

=
1

a3

∫

d3pδF2app̂ip̂j

+
1

a3

∫

dpp2
[

−
1

2
ahklp

2 ∂F̄

∂p
+

1

2
ahklpF̄

]

×
4π

15
(δijδkl + δikδjl + δilδjk)

=
1

a2

∫

d3pδF2pp̂ip̂j +
1

3
a2hijρX . (A25)

Here, we used
∫

dΩpp̂ip̂j p̂kp̂le
−ip̂ik̂iu

= 4π

[

j4(u)k̂ik̂j k̂k k̂l −
j3(u)

u
(k̂ik̂jδkl + 5 perms)

+
j2(u)

u2
(δijδkl + 2 perms)

]

(A26)

and
∫

dp4πp3F̄ = a4ρX , (A27)

where ρX is the energy density of X and jn is the n-th
spherical Bessel function.
Next, we consider the effect of F (rad), for which

δF (rad)
2 = 0 because the free-streaming length is very

short. Then, we obtain

δT (rad)
ij =

1

3
a2hijρrad. (A28)

We also note that perturbation in the energy momentum
tensor of φ vanishes since it behaves as non-relativistic
matter :

δT (φ)
ij = 0. (A29)

Taking the first-order perturbation of Eq. (A3), we ob-
tain

δT (tot)
ij = δP · ḡij + P̄ · δgij + a2Πij

=
1

3
a2hij(ρX + ρrad) + a2Πij , (A30)

where we used Eq. (A13) – Eq. (A15), Eq. (A22),
Eq. (A26), hii = 0 and δP = 0. The last condi-
tion comes from the fact that tensor perturbations can-
not produce perturbations in scalar variables. Using
Eq. (A25), Eq. (A28), Eq. (A29), and Eq. (A30), we ob-
tain

a2Πij =
1

a2

∫

d3pδF2pp̂ip̂j . (A31)

Substituting Eq. (A31) into the RHS of Eq. (A1), we
obtain

h
′′

ij + 2Huh
′

ij + hij

= 16πG
(a

k

)2 1

a4

∫

d3ppp̂ip̂j

×
∫ τ

0
dτ ′

1

2

∂hkl

∂τ
(τ ′)

∂F̄

∂p
(τ ′)pp̂kp̂le

−ikµ(τ−τ ′)

= −8πG
1

k2a2

∫ τ

0
dτ ′

∂hkl

∂τ
∫

dΩp
1

π
a4ρX p̂ip̂j p̂kp̂le

−ikµ(τ−τ ′)

= −24H2
u

1

a4ρtot(u)

∫ u

0
du′a4ρX

∂hij

∂u
(u′)

j2(u − u′)

(u− u′)2
,

(A32)

where we used partial integration, Eq. (A26) and Fried-
mann equationH2

u = 8πGρtota2/3k2. After decomposing
hij using Eq. (12), we finally obtain Eq. (17).

[1] Y. I. Izotov and T. X. Thuan, Astrophys. J. 710, L67
(2010) [arXiv:1001.4440 [astro-ph.CO]].

[2] E. Aver, K. A. Olive and E. D. Skillman, JCAP 1005,
003 (2010) [arXiv:1001.5218 [astro-ph.CO]]; JCAP 1204,
004 (2012) [arXiv:1112.3713 [astro-ph.CO]].

[3] E. Komatsu et al. [ WMAP Collaboration ], Astrophys. J.

Suppl. 192, 18 (2011). [arXiv:1001.4538 [astro-ph.CO]].
[4] J. Dunkley et al., Astrophys. J. 739, 52 (2011)

[arXiv:1009.0866 [astro-ph.CO]].
[5] R. Keisler et al., Astrophys. J. 743, 28 (2011)

[arXiv:1105.3182 [astro-ph.CO]].
[6] M. Archidiacono, E. Calabrese and A. Melchiorri, Phys.

EM tensor of X 

8

where we have used δF2(τ = 0) = 0 because there is no
X in the beginning.
We take the first-order perturbation of the energy-

momentum tensor of X :

T (X)
µν =

1
√

−detgµν

∫

d3pF
pµpν
p0

, (A23)

δT (X)
ij =

1

a3

∫

d3p

[

(δF1 + δF2)
pipj
p̄0

+ F̄ pipjδ

(

1

p0

)]

.

(A24)

Note that energy momentum tensor defined above trans-
forms as a tensor under general coordinate transforma-
tions since

∫

d3p/p0 ∝ d4pδ(gµνpµpν). Using Eq. (A13)
– Eq. (A15), we get

δT (X)
ij =

1

a3

∫

d3p
[

δF2app̂ip̂j

−
1

2
ahklp

2p̂ip̂j p̂kp̂l
∂F̄

∂p
+

1

2
ahklpp̂ip̂j p̂kp̂lF̄

]

=
1

a3

∫

d3pδF2app̂ip̂j

+
1

a3

∫

dpp2
[

−
1

2
ahklp

2 ∂F̄

∂p
+

1

2
ahklpF̄

]

×
4π

15
(δijδkl + δikδjl + δilδjk)

=
1

a2

∫

d3pδF2pp̂ip̂j +
1

3
a2hijρX . (A25)

Here, we used
∫

dΩpp̂ip̂j p̂kp̂le
−ip̂ik̂iu

= 4π

[

j4(u)k̂ik̂j k̂k k̂l −
j3(u)

u
(k̂ik̂jδkl + 5 perms)

+
j2(u)

u2
(δijδkl + 2 perms)

]

(A26)

and
∫

dp4πp3F̄ = a4ρX , (A27)

where ρX is the energy density of X and jn is the n-th
spherical Bessel function.
Next, we consider the effect of F (rad), for which

δF (rad)
2 = 0 because the free-streaming length is very

short. Then, we obtain

δT (rad)
ij =

1

3
a2hijρrad. (A28)

We also note that perturbation in the energy momentum
tensor of φ vanishes since it behaves as non-relativistic
matter :

δT (φ)
ij = 0. (A29)

Taking the first-order perturbation of Eq. (A3), we ob-
tain

δT (tot)
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where F (X) and F (rad) are distribution functions of the
dark radiation X and that of ordinary radiation (like
photon, gluon, and so on) with very short free-streaming
length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
We start with the effect of dark radiation on the

anisotropic stress. The distribution function of X obeys
the collisionless Boltzmann equation with source from
non-relativistic decaying particle φ:

dF

dt
=

BX

4π(p0)3
Γφρφδ

(

p0 −
mφ

2

)

, (A5)

where p0 is the energy ofX , and we assume that φ decays
into two Xs. Also note that p0 and pi should be regarded
as functions of pi through gµνpµpν = −(p0)2 + a2(δij +
hij)pipj = 0 and pi = gijpj = a−2(δij −hij)pj . The LHS
of Eq. (A5) is

dF

dt
=

∂F

∂t
+

dxi

dt

∂F

∂xi
+

dpi
dt

∂F

∂pi

=
∂F

∂t
+

pi

p0
∂F

∂xi
+

1

2
gij,k

pipj

p0
∂F

∂pk
,

(A6)

where we used

dxi

dt
=

pi

p0
, (A7)

dpi
dt

=
1

2
gjk,i

pjpk

p0
. (A8)

Eq. (A8) is obtained from the geodesic equation.
Next we decompose F into the unperturbed part

F̄ (t, p), where p ≡ √
pipi should not be confused with

the pressure, and the perturbed part δF . We further
decompose δF into two terms δF1 and δF2 for later con-
venience:

δF1(t, x
i, pi) ≡ F̄ (t, (gijpipj)

1/2/a)− F̄ (t, p),

(A9)

δF2(t, x
i, pi) ≡ F − F̄ − δF1. (A10)

We get from Eq. (A5) the zeroth-order equation

∂F̄

∂t
=

BX

4π(p̄0)3
Γφρφδ

(

p̄0 −
mφ

2

)

, (A11)

and the first-order one

∂(δF1 + δF2)

∂t
+

p̄i

p̄0
∂(δF1 + δF2)

∂xi

+
1

2
(δgjk),i

p̄j p̄k

p̄0
∂F̄

∂pi
= a

∂2F̄

∂p∂t
δp0. (A12)

In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
produced at t = tdec. We can see that the energy fraction
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FIG. 7: 4πp3F̄ as functions of p (normalized by pdec ≡

a(tdec)mφ/2). Each line corresponds to t " tdec (red solid),
t = 10−4tdec (green long-dashed), 10−2tdec (blue short-
dotted) and tdec(magenta dotted).

4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:

δF1 = −
1

2
hij

pipj
p

∂F̄

∂p
, (A13)

δp0 = −
1

2a

hijpipj
p

, (A14)

δpi = −
1

a2
hijpj . (A15)

Using p̂i ≡ pi/p and substituting Eq. (A13) – Eq. (A15)
into Eq. (A12), we get

∂δF2

∂t
+

p̂i
a

∂δF2

∂xi
=

1

2

∂hij

∂t

∂F̄

∂p
pp̂ip̂j. (A16)

In terms of conformal time τ =
∫

dt/a, this equation is
expressed as

∂δF2

∂τ
+ p̂i

∂δF2

∂xi
=

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j. (A17)

In Fourier space,

∂δF2

∂τ
+ ikµδF2 =

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j , (A18)

where

δF2(τ, x
i, pi) =

∫

d3k

(2π)3
δF2(τ, ki, pi)e

ikix
i

, (A19)

hij(τ, x
i) =

∫

d3k

(2π)3
hij(τ, ki)e

ikix
i

, (A20)

µ ≡ k̂ip̂i. (A21)

We can use line-of-sight integral to get the solution of
Eq. (A18):

δF2 =

∫ τ

0
dτ ′

1

2

∂hij

∂τ
(τ ′)

∂F̄

∂p
(τ ′)pp̂ip̂je

−ikµ(τ−τ ′), (A22)From Boltzmann eq :
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